

Foundations of compressed sensing for learning sparsity of high-dimensional problems

Clayton G. Webstert*

Special thanks to: B. Adcock[‡], S. Brugiapaglia[‡], N. Dexter[†], H. Tran*

[‡]Department of Mathematics, Simon Fraser University

†Department of Mathematics, University of Tennessee

*Department of Computational & Applied Mathematics (CAM)
Oak Ridge National Laboratory

Introduction

Why do we care about "sparse" signals?

Example: We often represent images by expansions like

$$u(y) = \sum_{j=1}^{N} c_j \Psi_j(y)$$

where, e.g., $c=(c_1,\ldots,c_N)\in\mathbb{R}^N$ and $\{\Psi_j\}_{j=1}^N$ are wavelets.

Figure Left: Original image. Right: Image obtained after setting 99.98% of the coefficients c_j in the biorthogonal wavelet transform to 0. Preserves 97.87% of energy.

Takeaway: Sparse approximations can provide good solutions to real problems.

Deterministic and stochastic coefficients

$$y \in \mathcal{U} \subset \mathbb{R}^d \longrightarrow$$

PDE model:
$$\mathcal{F}(a(y))[u(y)] = 0$$
 in $D \subset \mathbb{R}^n$, $n = 1, 2, 3$

- The operator \mathcal{F} , linear or nonlinear, depends on a vector of d parameters $y=(y_1,y_2,\ldots,y_d)\in\mathcal{U}=\prod_{i=1}^d\mathcal{U}_i$, which can be deterministic or stochastic.
- Deterministic setting: y are known or controlled by the user.
 - Goal: a query $y \in \mathcal{U}$, quickly approximation the solution map $y \mapsto u(y) \in \mathcal{V}$.
- Stochastic setting: y may be affected by uncertainty and are modeled as a random vector y: Ω → U with joint PDF ρ: U → R+ s.t. ρ(y) = ∏^d_{i=1} ρ_i(y_i).
 - Goal: Uncertainty quantification of u or some statistical Qol depending on u, i.e.,

$$\mathbb{E}[u]$$
, $\mathbb{V}ar[u]$, $\mathbb{P}[u > u_0] = \mathbb{E}[1_{\{u > u_0\}}]$.

Deterministic and stochastic coefficients

parameters
$$y \in \mathcal{U} \subset \mathbb{R}^d$$
 —

PDE model:
$$\mathcal{F}(a(y))[u(y)] = 0$$
 in $D \subset \mathbb{R}^n$, $n = 1, 2, 3$

- The operator \mathcal{F} , linear or nonlinear, depends on a vector of d parameters $y=(y_1,y_2,\ldots,y_d)\in\mathcal{U}=\prod_{i=1}^d\mathcal{U}_i$, which can be deterministic or stochastic.
- Deterministic setting: y are known or controlled by the user.
 - Goal: a query y ∈ U, quickly approximation the solution map y → u(y) ∈ V.
- Stochastic setting: y may be affected by uncertainty and are modeled as a random vector y: Ω → U with joint PDF ρ: U → R+ s.t. ρ(y) = ∏^d_{i=1} ρ_i(y_i).
 - Goal: Uncertainty quantification of u or some statistical Qol depending on u, i.e.,

$$\mathbb{E}[u], \, \mathbb{V}ar[u], \, \mathbb{P}[u > u_0] = \mathbb{E}[1_{\{u > u_0\}}].$$

Deterministic and stochastic coefficients

$$y \in \mathcal{U} \subset \mathbb{R}^d$$
 \longrightarrow

PDE model:
$$\mathcal{F}(a(y))[u(y)] = 0$$
 in $D \subset \mathbb{R}^n$, $n = 1, 2, 3$

- The operator \mathcal{F} , linear or nonlinear, depends on a vector of d parameters $y=(y_1,y_2,\ldots,y_d)\in\mathcal{U}=\prod_{i=1}^d\mathcal{U}_i$, which can be deterministic or stochastic.
- Deterministic setting: y are known or controlled by the user.
 - Goal: a query $y \in \mathcal{U}$, quickly approximation the solution map $y \mapsto u(y) \in \mathcal{V}$.
- Stochastic setting: y may be affected by uncertainty and are modeled as a random vector y: Ω → U with joint PDF ρ: U → R+ s.t. ρ(y) = Π^d_{i=1} ρ_i(y_i).
 - Goal: Uncertainty quantification of u or some statistical Qol depending on u, i.e.,

$$\mathbb{E}[u], \, \mathbb{V}ar[u], \, \mathbb{P}[u > u_0] = \mathbb{E}[1_{\{u > u_0\}}].$$

Some assumptions

Continuity and coercivity (CC)

For all $x \in \overline{D}$ and $y \in \mathcal{U}$, $0 < a_{\min} \le a(x, y) \le a_{\max}$.

Analyticity (AN)

The complex continuation of a, represented as the map $a: \mathbb{C}^d \to L^{\infty}(D)$, is an $L^{\infty}(D)$ -valued analytic function on \mathbb{C}^d .

Existence and uniqueness of solutions (EU)

For all $y \in \mathcal{U}$ the PDE problem admits an unique solution $u \in \mathcal{V}$, where \mathcal{V} is a suitable finite or infinite dimensional Hilbert or Banach space. In addition

$$\forall y \in \mathcal{U}, \ \exists C(y) > 0 \text{ such that } \|u(y)\|_{\mathcal{V}} \leq C(y)$$

Some simple consequences:

- The PDE induces a map u = u(y): U → V.
- If $\int_{\mathcal{U}} C(y)^p \varrho(y) dy < \infty$ then $u \in L^p_{\varrho}(\mathcal{U}, \mathcal{V})$.

Deterministic and stochastic coefficients

$$y \in \mathcal{U} \subset \mathbb{R}^d \longrightarrow$$

Clayton G. Webster, csm.ornl.gov/~cgwebster

PDE model:
$$\mathcal{F}(a(y))[u(y)] = 0$$
 in $D \subset \mathbb{R}^n$, $n = 1, 2, 3$

- The operator \mathcal{F} , linear or nonlinear, depends on a vector of d parameters $y=(y_1,y_2,\ldots,y_d)\in\mathcal{U}=\prod_{i=1}^d\mathcal{U}_i$, which can be deterministic or stochastic.
- Deterministic setting: y are known or controlled by the user.
 - Goal: a query y ∈ U, quickly approximation the solution map y → u(y) ∈ V.
- Stochastic setting: y may be affected by uncertainty and are modeled as a random vector y: Ω → U with joint PDF ρ: U → R+ s.t. ρ(y) = ∏^d_{i=1} ρ_i(y_i).
 - Goal: Uncertainty quantification of u or some statistical Qol depending on u, i.e.,

$$\mathbb{E}[u], \, \mathbb{V}ar[u], \, \mathbb{P}[u > u_0] = \mathbb{E}[1_{\{u > u_0\}}].$$

Some assumptions

Continuity and coercivity (CC)

For all $x \in \overline{D}$ and $y \in \mathcal{U}$, $0 < a_{\min} \le a(x, y) \le a_{\max}$.

Analyticity (AN)

The complex continuation of a, represented as the map $a: \mathbb{C}^d \to L^{\infty}(D)$, is an $L^{\infty}(D)$ -valued analytic function on \mathbb{C}^d .

Existence and uniqueness of solutions (EU)

For all $y \in \mathcal{U}$ the PDE problem admits an unique solution $u \in \mathcal{V}$, where \mathcal{V} is a suitable finite or infinite dimensional Hilbert or Banach space. In addition

$$\forall y \in \mathcal{U}, \ \exists C(y) > 0 \text{ such that } \|u(y)\|_{\mathcal{V}} \leq C(y)$$

Some simple consequences:

- The PDE induces a map u = u(y): U → V.
- If $\int_{\mathcal{U}} C(y)^p \varrho(y) dy < \infty$ then $u \in L^p_{\varrho}(\mathcal{U}, \mathcal{V})$.

Deterministic and stochastic coefficients

parameters
$$y \in \mathcal{U} \subset \mathbb{R}^d$$
 —

$$\begin{array}{c} \mathsf{PDE} \; \mathsf{model} \colon \\ \mathcal{F}(a(y))[u(y)] = 0 \\ \mathsf{in} \; D \subset \mathbb{R}^n, \; n = 1, 2, 3 \end{array}$$

- The operator \mathcal{F} , linear or nonlinear, depends on a vector of d parameters $y=(y_1,y_2,\ldots,y_d)\in\mathcal{U}=\prod_{i=1}^d\mathcal{U}_i$, which can be deterministic or stochastic.
- Deterministic setting: y are known or controlled by the user.
 - Goal: a query y ∈ U, quickly approximation the solution map y → u(y) ∈ V.
- Stochastic setting: y may be affected by uncertainty and are modeled as a random vector y: Ω → U with joint PDF ρ: U → R+ s.t. ρ(y) = ∏^d_{i=1} ρ_i(y_i).
 - Goal: Uncertainty quantification of u or some statistical Qol depending on u, i.e.,

$$\mathbb{E}[u], \, \mathbb{V}ar[u], \, \mathbb{P}[u > u_0] = \mathbb{E}[1_{\{u > u_0\}}].$$

Some assumptions

Continuity and coercivity (CC)

For all $x \in \overline{D}$ and $y \in \mathcal{U}$, $0 < a_{\min} \le a(x, y) \le a_{\max}$.

Analyticity (AN)

The complex continuation of a, represented as the map $a: \mathbb{C}^d \to L^{\infty}(D)$, is an $L^{\infty}(D)$ -valued analytic function on Cd.

Existence and uniqueness of solutions (EU)

For all $y \in \mathcal{U}$ the PDE problem admits an unique solution $u \in \mathcal{V}$, where \mathcal{V} is a suitable finite or infinite dimensional Hilbert or Banach space. In addition

$$\forall y \in \mathcal{U}, \ \exists C(y) > 0 \text{ such that } \|u(y)\|_{\mathcal{V}} \leq C(y)$$

Some simple consequences:

Clayton G. Webster, csm.ornl.gov/~cgwobster

- The PDE induces a map u = u(y): U → V.
- If $\int_{\mathcal{U}} C(y)^p \varrho(y) dy < \infty$ then $u \in L^p_\varrho(\mathcal{U}, \mathcal{V})$.

Deterministic and stochastic coefficients

$$y \in \mathcal{U} \subset \mathbb{R}^d \longrightarrow$$

PDE model:
$$\mathcal{F}(a(y))[u(y)] = 0$$
 in $D \subset \mathbb{R}^n$, $n = 1, 2, 3$

- The operator \mathcal{F} , linear or nonlinear, depends on a vector of d parameters $y=(y_1,y_2,\ldots,y_d)\in\mathcal{U}=\prod_{i=1}^d\mathcal{U}_i$, which can be deterministic or stochastic.
- Deterministic setting: y are known or controlled by the user.
 - Goal: a query y ∈ U, quickly approximation the solution map y → u(y) ∈ V.
- Stochastic setting: y may be affected by uncertainty and are modeled as a random vector y: Ω → U with joint PDF ρ: U → R+ s.t. ρ(y) = ∏^d_{i=1} ρ_i(y_i).
 - Goal: Uncertainty quantification of u or some statistical Qol depending on u, i.e.,

$$\mathbb{E}[u], \, \mathbb{V}ar[u], \, \mathbb{P}[u > u_0] = \mathbb{E}[1_{\{u > u_0\}}].$$

Some assumptions

Continuity and coercivity (CC)

For all $x \in \overline{D}$ and $y \in \mathcal{U}$, $0 < a_{\min} \le a(x, y) \le a_{\max}$.

Analyticity (AN)

The complex continuation of a, represented as the map $a: \mathbb{C}^d \to L^{\infty}(D)$, is an $L^{\infty}(D)$ -valued analytic function on \mathbb{C}^d .

Existence and uniqueness of solutions (EU)

For all $y \in \mathcal{U}$ the PDE problem admits an unique solution $u \in \mathcal{V}$, where \mathcal{V} is a suitable finite or infinite dimensional Hilbert or Banach space. In addition

$$\forall y \in \mathcal{U}, \ \exists C(y) > 0 \text{ such that } \|u(y)\|_{\mathcal{V}} \leq C(y)$$

Some simple consequences:

- The PDE induces a map u = u(y): U → V.
- If $\int_{\mathcal{U}} C(y)^p \varrho(y) dy < \infty$ then $u \in L^p_{\varrho}(\mathcal{U}, \mathcal{V})$.

A simple illustrative example

Parameterized elliptic problems: $\mathcal{U} = [-1,1]^d$, $\mathcal{V} = H_0^1(D)$, $\varrho = 1/2^d$

$$\left\{ \begin{array}{ll} -\nabla \cdot (a(x,y)\nabla u(x,y)) &= f(x) & x \in D, \, y \in \mathcal{U} \\ \\ u(x,y) &= 0 & x \in \partial D, \, y \in \mathcal{U} \end{array} \right.$$

Assume a(x,y) satisfies (CC) and (AN), and that $f \in L^2(D)$, then:

$$\forall y \in \mathcal{U}, \quad u(y) \in H^1_0(D) \equiv \mathcal{V} \quad \text{and} \quad \|u(y)\|_{\mathcal{V}} \leq \frac{CP}{a_{\min}} \|f\|_{L^2(D)}$$

• Lax-Milgram ensures the existence and uniqueness of solution $u \in L^2_{\varrho}(\mathcal{U},\mathcal{V}).$

Affine and non-affine coefficients:

$$a(x,y) = a_0(x) + \sum_{i=1}^d y_i \psi_i(x).$$

$$a(x,y) = a_0(x) + \left(\sum_{i=1}^d y_i \psi_i(x)\right)^q$$
, $q \in \mathbb{N}$.

$$a(x,y) = a_0(x) + \exp\left(\sum_{i=1}^d y_i \psi_i(x)\right)$$
 (e.g., truncated KL expansion in the log scale).

Remark. In what follows - can be extended to nonlinear elliptic (u^k) , parabolic, and some hyperbolic PDEs, all defined on unbounded high-dimensional domains.

Asymptotic convergence analysis

The general abstract setting

Main Theorem. [Tran, W., Zhang '16]

Let $b:[0,\infty)^d\to\mathbb{R}$ and Λ_s^{Qopt} be the set of indices corresponding to s largest $e^{-b(\nu)}$. Then, for any $\varepsilon>0$, there exists $s_{\varepsilon}>0$ s.t. for all $s>s_{\varepsilon}$:

$$\sum_{\boldsymbol{\nu} \notin \Lambda_s^{\mathsf{Qopt}}} e^{-b(\boldsymbol{\nu})} \leq C_{\boldsymbol{u}}(\boldsymbol{\varepsilon}) s \exp\left(-\left(\frac{s}{|\mathcal{P}|(1+\boldsymbol{\varepsilon})}\right)^{1/d}\right)$$

Here, $C_u(\varepsilon)=(4e+4\varepsilon e-2)\frac{e}{e-1}$ is independent of s and d.

- Achieve sub-exponential convergence rates $s \exp(-(\kappa s)^{1/d})$, with optimal κ .
- ullet $|\mathcal{P}|$ can be determined computationally

for
$$B(\nu) = \rho^{-\nu} \prod_{i=1}^d \sqrt{2\nu_i + 1}$$
.
for $B(\nu) = \inf_{\rho, \delta} C_{\delta} \rho^{-\nu}$.
for $B(\nu) = \rho^{-\nu} \frac{|\nu|!}{|\nu|}$.

Faster rates are realized at larger cardinality.

Asymptotic convergence analysis

Comparisons to previous rates using Taylor polynomials in total degree subspaces

Proposition. [Tran, W., Zhang '16]

Consider the Taylor series $\sum_{m{
u}\in\mathbb{N}^d}t_{m{
u}}y^{m{
u}}$ of u. Assume that

$$||t_{\nu}||_{\mathcal{V}} \le C\rho^{-\nu}, \quad \forall \nu \in \mathbb{N}^d.$$
 (1)

Denote by $\Lambda_s^{\mathsf{Qopt}}$ the set of indices corresponding to s largest bounds in (1). For any $\varepsilon>0$, there exists $s_{\varepsilon}>0$ depending on ε such that, for all $s>s_{\varepsilon}$:

$$\sup_{\boldsymbol{y} \in \mathcal{U}} \left\| u(\boldsymbol{y}) - \sum_{\boldsymbol{\nu} \in \Lambda_s^{Qopt}} t_{\boldsymbol{\nu}} \boldsymbol{y}^{\boldsymbol{\nu}} \right\|_{\mathcal{V}} \leq C_u(\varepsilon) s \exp\left(-\left(\frac{s d! \prod_{i=1}^d \lambda_i}{(1+\varepsilon)}\right)^{1/d}\right).$$

Previous rates:

- Applying Stechkin estimate in [CDS '11] to our setting: $(\prod_{i=1}^d \frac{1}{1-e^{-p\lambda_i}})^{1/p} s^{1-\frac{1}{p}}$. Rate is non-asymptotic and applicable for infinite dimensional parameter space.
- Optimization of Stechkin rate [BNTT '14]: $s \exp\left(-\frac{1}{e}\left(s\prod_{i=1}^{d}\lambda_i\right)^{1/d}d\xi\right)$. $\xi \nearrow \frac{e-1}{e} \simeq 0.63$ as $s \nearrow \infty$.

Asymptotic convergence analysis

Numerical illustration II

Example 2: Isotropic 8-dimensional parametric domain

Estimate the truncation error of $\sum_{\nu \in \mathbb{R}^8} \rho^{-\nu}$, where $\rho_i = 2$, $\forall 1 \leq i \leq 8$.

Forward-backward iterations for joint sparse recovery

A new theory to guarantee strong convergence

An operator $T: \mathcal{V} \to \mathcal{V}$ is said to be firmly nonexpansive (FNE) if

$$\|Tx-Ty\|_{2,2}^2 \leq \|x-y\|_{2,2}^2 - \|(I-T)x-(I-T)y\|_{2,2}^2 \qquad \forall x,y \in \mathcal{V}.$$

Lemma. [Bauschke, Combettes 2010]. Let $\tau > 0$. Then J_{τ} is row-wise firmly nonexpansive.

Proof.

Since $B_2(\mathbf{0},1)$ is a nonempty, closed, convex set, and $J_{\tau}=(I-\mathcal{P}_{\tau})$ where \mathcal{P}_{τ} is a projection, we have $\langle \mathcal{P}_{\tau}v_j-\mathcal{P}_{\tau}w_j,w_j-\mathcal{P}_{\tau}w_j\rangle_2\leq 0$

$$\langle \mathcal{P}_{\tau} w_j - \mathcal{P}_{\tau} v_j, v_j - \mathcal{P}_{\tau} v_j \rangle_2 \leq 0$$

for every $v_j, w_j \in \mathbb{C}^{\Omega}$. Adding, we obtain $\langle \mathcal{P}_{\tau} v_j - \mathcal{P}_{\tau} w_j, v_j - w_j \rangle_2 \ge \|\mathcal{P}_{\tau} v_j - \mathcal{P}_{\tau} w_j\|_2^2$. It follows

$$||J_{\tau}(v_{j})-J_{\tau}(w_{j})||_{2}^{2} = ||(I-\mathcal{P}_{\tau})v_{j}-(I-\mathcal{P}_{\tau})w_{j}||_{2}^{2}$$

$$= ||v_{j}-w_{j}||_{2}^{2} + ||\mathcal{P}_{\tau}v_{j}-\mathcal{P}_{\tau}w_{j}||_{2}^{2} - 2\langle v_{j}-w_{j}, \mathcal{P}_{\tau}v_{j}-\mathcal{P}_{\tau}w_{j}\rangle_{2}$$

$$\leq ||v_{j}-w_{j}||_{2}^{2} - ||\mathcal{P}_{\tau}v_{j}-\mathcal{P}_{\tau}w_{j}||_{2}^{2},$$

which implies J_{τ} is firmly nonexpansive since $(I - J_{\tau}) = (I - I + \mathcal{P}_{\tau}) = \mathcal{P}_{\tau}$.

Forward-backward iterations for joint sparse recovery

National Laboratory

A new theory to guarantee strong convergence

Theorem. [Dexter, Tran, W. '17].

Let $0 < \tau < 2/\|H\|_2$. Then the iterations $x^{k+1} := J_\tau \circ G_\tau(x^k)$ converge strongly to an element $x^* \in X^*$ from any $x^0 \in \mathbb{C}^{N \times \Omega}$.

Sketch of proof: First-order optimality conditions imply $\|(A^*(Ax^*-u))_j\|_2 \le 1$ for all $j \in [N]$ and $x^* \in X^*$. Therefore, we partition the index set into

$$L := \{ j : \| (A^*(Ax^* - u))_j \|_2 < 1 \} \qquad E := \{ j : \| (A^*(Ax^* - u))_j \|_2 = 1 \}.$$

Easy to see: $L \subset (\operatorname{supp}(x^*))^c$, $\operatorname{supp}(x^*) \subseteq E$, & $L \cup E = [N] \quad \forall \ x^* \in X^*$.

- Finite convergence for $j \in L$ follows arguments from [Hale, Yin, Zhang '08]
- $oldsymbol{0}$ We show "angular convergence" for $j \in E$ using the firmly nonexpansive property
- ullet Weak convergence has been shown in more general setting, see, e.g., [Daubechies, et al '04], [Combettes '04], via Opial's Theorem and "asymptotic regularity" of $S_{ au}$
- Combine the weak and angular convergence to obtain strong convergence

Sum over $j \in [N]$ with $\bar{c}^k := \sum_{j=1}^N c_j^k$, apply the nonexpansiveness of G_{τ} and iterate:

$$\begin{aligned} \|x^{k+1} - x^*\|_2^2 &\leq \|G_{\tau}(x^k) - G_{\tau}(x^*)\|_2^2 - \bar{c}^k \\ &\leq \|x^k - x^*\|_2^2 - \bar{c}^k \leq \underbrace{\cdots}_{k\text{-times}} \leq \|x^0 - x^*\|_2^2 - \sum_{\ell=0}^k \bar{c}^\ell. \end{aligned}$$

Rearrange: $\sum_{\ell=0}^k \bar{c}^\ell \leq \underbrace{\|x^0 - x^*\|_2^2}_{\text{independent of }k} \implies \bar{c}^k \to 0$, and hence $c_j^k \to 0$ as $k \to \infty$.

$$\text{Collinearity \& } c_j^k \to 0 \implies \theta_j^k := \sphericalangle(x_j^k, x_j^*) := \cos^{-1}\left(\frac{\langle x_j^k, x_j^* \rangle_2}{\|x_j^k\|_2 \|x_j^*\|_2}\right) \to 0 \text{ as } k \to \infty.$$

Weak convergence $\implies \|x_j^k\|_2 \cos \theta_j^k \equiv \langle x_j^k, x_j^* \rangle / \|x_j^*\|_2 \rightarrow \langle x_j^*, x_j^* \rangle / \|x_j^*\|_2 \equiv \|x_j^*\|_2$ as $k \to \infty$ (also works when $x_j^* = 0$, slight change) and x_j^k are bounded

Use weak and angular convergence to show

$$\|x_j^k\|_2 - \|x_j^*\|_2 = \underbrace{\left(\|x_j^k\|_2 - \|x_j^k\|_2 \cos\theta_j^k\right)}_{\text{angular convergence \& boundedness}} + \underbrace{\left(\|x_j^k\|_2 \cos\theta_j^k - \|x_j^*\|_2\right)}_{\text{weak convergence}} \to 0 \ \text{ as } k \to \infty$$

Strong convergence follows since

$$\|x_j^k - x_j^*\|_2^2 = \|x_j^k\|_2^2 + \|x_j^*\|_2^2 - 2\langle x_j^k, x_j^*\rangle_2 \to 2\|x_j^*\|_2^2 - 2\|x_j^*\|_2^2 = 0 \quad \text{as } k \to \infty.$$

Concluding remarks

- Certified recovery guarantees that combat the curse of dimensionality through new weighted \(\ell_1\) minimization and iterative hard thresholding approaches:
- Exploit the structure of the sets of best s-terms.
- Established through a improved estimate of restricted isometry property (RIP), and proved for general bounded orthonormal systems.
- Can recover the "true" best s-term approximation and not a best weighted s-term (which
 requires a weighted version of Stechkin's estimate).
- Joint-sparse recovery enables the simultaneous reconstruction of a set of sparse vectors with common support, from measurements.
- Derived the forward-backward splitting method in this setting
- More work to be done in the convergence theory of these methods
 - Recently shown strong convergence for the forward-backward splitting method
 - Would like to show strong convergence for Bregman iterations
- Showed connection between joint-sparse recovery problem and parameterized PDEs
- Need more numerical experiments
 - Nonlinear parameterized PDEs
 - Linear vs. nonlinear stochastic parameterization
 - Can be improved with the introduction of a weighted ℓ_1 regularization (similar to previous work).
- On unified NSP based-condition for a general class of nonconvex minimizations showing that they are at least as good as ℓ₁ minimization in exact recovery of sparse signals.