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Why do we care about “sparse” signals? '
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Example: We often represent images by expansions like

Figure Left: Original image. Right: Image obtained after setting 90 08%; of the coefficients ¢; in the
biorthogonal wavelet transform to 0. Preserves 07 57%; of energy.

Takeaway: Sparse approximations can provide good solutions to real problems.
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Deterministic and stochastic coefhcents
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ra— PDE model:
y €U C RY 3 Fla(y)|u(y)] =0
inDCR™, n=1,2,3

quantity of
— interest Q|u(y)]

@ [he operator F, linear or nonlinear, depends on a vector of d parameters
vy=(y1,¥y2,...,yd) EU = I'I;Li U;, which can be deterministic r{ stochastic.
¢ Deterministic setting: y are known or controlled by the user.

o Goal: a query y € U, quickly appraximation the solution map y — u(y) € V.

¢ Stochastic setting: y may be affected by uncertainty and are modeled as a random vector
y: 8 — U with joint PDF o: U — R, s.t. ply) = ]'[‘f't=l oi(yi).

¢ Goal: Uncertainty quantification of u or some statistical Qol depending on u, i.e.,

Elu], Var[u], Plu > uo] = E[1 (. u1]-
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P PDE model:
y U C R —3 Fa(y))[u(y)] =0
inDCR™, n=1,2,3

quantity of
interest Qfu(y)]

e [he operator F, linear or nonlinear, depends on a vector of 4 parameters
= (y1,y2,...,va) € U =[]2_, Us, which can be deterministic i stochastic.
¢ Deterministic setting: y are known or controlled by the user.

e Goal: a query y € U, quickly appraximation the solution map y — u(y) € V.

¢ Stochastic setting: y may be affected by uncertainty and are modeled as a random vector
y : Q — U with joint PDF o :U — R, s.t. o(y) = [T2, oi(w:)-

¢ Goal: Uncertainty quantification of u or some statistical Qol depending on u, i.e.,

Efu], Var[u], Plu > uo] = E[1 (45 u01]-
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S PDE model:
y €U C RY —3 Fla(y)|u(y)] =0
inDCR™, n=1,2,3

quantity of
interest Qlu(y)|

@ The operator F, linear or nonlinear, depends on a vector of d parameters
v=(y1,¥y2,...,yd) EU = I’If=1 U;, which can be deterministic r‘ stochastic.
¢ Deterministic setting: y are known or controlled by the user.

e Goal: a query y € U, quickly appraximation the solution map y — u(y) € V.

¢ Stochastic setting: y may be affected by uncertainty and are modeled as a random vector
y: Q2 — U with joint PDF o : U — R, s.t. o(y) = l'[‘:."r=1 oi(yi).

e Goal: Uncertainty quantification of u or some statistical Qol depending on u, i.e.,
E[u], Var[u], Plu > uo] = E[1 (4 u}]-
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Some assumptions _
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Continuity and coercivity (CC)

Forallz € D andy €U, 0 < @min < a(z,y) < @Gmax-

Analyticity (AN)

The complex continuation of a, represented as the map a : C% — L°°(D), is an L°°(D)-valued
analytic function on C%.

R

Existence and uniqueness of solutions (EU)

For all y € U the PDE problem admits an unique solution w € V, where V is a suitable finite or
infinite dimensional Hilbert or Banach space. In addition

VyelU, 3C(y) > 0 such that [lu(y)llv < C(y)

Some simple consequences:
@ The PDE induces a map « = uly) : id — V.
o If [,,C(y)Peo(y)dy < oo then u & L, (U V).

Clayton G. Webster, csa.ornl . gov/ -cgwebstor SIAM UQ18 Tuesrial — Apnil, 2018



P'i‘CF' P 2 LB

Motivation: Parameterized PDE models ¥ OAK RIDGE

Nanonal |aborarorn

Deterministic and stochastic coefhcents
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p—— PDE model:
yelU c R4 —3 F(a(y))[u(y)] =0
inDCR™, n=1,2,3

quantity of
interest Q[u(y)]

o [he operator F, linear or nonlinear, depends on a vector of 4 parameters
y=(y1.y2,...,yd) EU = ['If'=1 U;, which can be deterministic t‘ stochastic.
¢ Deterministic setting: y are known or controlled by the user.

e Goal: a query y € U, quickly appraximation the solution map y — u(y) € V.

¢ Stochastic setting: y may be affected by uncertainty and are modeled as a random vector
y : Q — U with joint PDF o: U — Ry s.t. o(y) =12, ei(wi)-

e Goal: Uncertainty quantification of u or some statistical Qol depending on u, i.e.,

E[u], Var[u], Plu > ug] = E[l {4+ 4}
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Continuity and coercivity (CC)

Forallz € D and y €U, 0 < amin < a(z,y) < aGmax.

Analyticity (AN)

The complex continuation of a, represented as the map a : C? - L*°(D), is an L>°(D)-valued
analytic function on C9.

Existence and uniqueness of solutions (EU)

For all y € U the PDE problem admits an unique solution w € V, where V is a suitable finite or
infinite dimensional Hilbert or Banach space. In addition

VyelU, 3C(y) > 0 such that ||u(y)|lv < C(y)

Some simple consequences:
@ The PDE induces a map u = uly) : id — V.
o If [, C(y)Po(y)dy < oo then u & L(U. V).
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Deterministic and stochastic coefhcents

E——— PDE model:
y €U C RY —3 Fla(y))[u(y)] =0
inDCR™, n=1,2,3

quantity of
— interest Q|u(y)]

e The operator F, linear or nonlinear, depends on a vector of 4 parameters
y=(y1.92,...,9d) EU = I'I;Ll U;, which can be deterministic " stochastic.
¢ Deterministic setting: y are known or controlled by the user.

e Goal: a query y € U, quickly appraximation the solution map ¥y — u(y) € V.

¢ Stochastic setting: y may be affected by uncertainty and are modeled as a random vector
y: 8 — U with joint PDF o: U — R, s.t. ply) = l'[‘:’l'r=l oilyi).

e Goal: Uncertainty quantification of u or some statistical Qol depending on u, i.e.,

E[u], Var[u], Plu > uo] = E[l (5 ug}]-
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Continuity and coercivity (CC)
Forallz € D and y €U, 0 < amin < a(z,y) < @Gmax.

Analyticity (AN)

The complex continuation of a, represented as the map a : C? - L*°(D), is an L>°(D)-valued
analytic function on C%.

R

Existence and uniqueness of solutions (EU)

For all y € U the PDE problem admits an unique solution w € V, where V is a suitable finite or
infinite dimensional Hilbert or Banach space. In addition

YyelU, 3C(y) > 0 such that ||u(y)|lv < C(y)

Some simple consequences:
@ The PDE induces a map u« = uly) : i — V.
o If [}, C(y)Po(y)dy < oo then u & L
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Deterministic and stochastic coefhcents
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- PDE model:
y €U C RY — Fla(y)|u(y)] =0
inDCR", n=1,2,3

quantity of
interest Q|u(y)]

o [he operator F, linear or nonlinear, depends on a vector of 4 parameters
= (y1,¥2,...,9yd) EU = Hle U;, which can be deterministic r{ stochastic.
¢ Deterministic setting: y are known or controlled by the user.

e Goal: a query y € U, quickly appraximation the solution map ¥ — u(y) € V.

@ Stochastic setting: y may be affected by uncertainty and are modeled as a random vector
y : Q — U with joint PDF o : U — Ry s.t. o(y) = [T, oi(wi)-

¢ Goal: Uncertainty quantification of u or some statistical Qol depending on u, i.e.,

E[u], Varfu], Plu > to] = E[l (4540}
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Continuity and coercivity (CC)

Forallz€ D andy €U, 0 < amin < a(z,y) < Gmax-

Analyticity (AN)

The complex continuation of a, represented as the map a : C? - L*°(D), is an L>°(D)-valued
analytic function on C%.

R

Existence and uniqueness of solutions (EU)

For all y € U the PDE problem admits an unique solution w € V, where V is a suitable finite or
infinite dimensional Hilbert or Banach space. In addition

VyelU, 3C(y) > 0 such that ||u(y)|lv < C(y)
Some simple consequences:

@ The PDE induces a map u = uly) : U — V.
o If [, C(y)Pe(y)dy < co then u € Lo(U. V).
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~V-(alz,y)Vu(z,y)) = f(z) z€D,yel
{ u(z,y) =0 z€0D,ycl
Assume a(z, y) satisfies (CC) and (AN), and that f € L2(D), then:
Cp

Qmin

o Lax-Milgram ensures the existence and uniqueness of solution u € Lg (Uu,v).

VyelU, u(y)€Ha(D)=V and |u(y)|lv < WfllL2(p)

Affine and non-affine coefficients:
Q a(zx,y) =aolx) + Zf:: yivi(z).
@ a(z,y) = ao(z) + (TL, wivi(=))", g EN.

© alz,y) =ao(x) +exp ( f=| yi:,b,-(::}) (e.g.. truncated KL expansion in the log scale).

Remark. In what follows - can be extended to nonlinear elliptic (u*), parabolic, and some
hyperbolic PDEs, all defined on unbounded high-dimensional domains.

Clayton G Webster, can.omnl . gov/-cgwebstar SIAM UQ1B Tutorial — Apnil, 2018



Motrwaton

Asymptotic convergence analysis % OAK RIDGE

_ ~anonal | .aborstory
The general abstract setting '

§ ikl K AAE g & i B

Main Theorem. [ran W.. Zhang 16)

Let b : [lEI._.ur::.)‘i — R and :19'“'“ be the set of indices corresponding to s largest e (). Then,
for any £ > 0, there exists s: > 0 s.t. for all s > s.:

- i
Y ) < Cue) sexp ('(m(l +E>) )

vgA o

Here, (', () = (de + d2e — 2) — is independent of s and d.

o Achieve sub-exponential convergence rates s exp(—(xs)'/“), with optimal x.

e |P| can be determined computationally

QP= {l-' € [0,00) : T, Aaws < 1}. for B(v) = p 12, V2v; + 1.
@ P={rel0.cc)?: T, Av;s <1 ¥(p.5) € A}. for B(v) = inf Csp™".
P,
Q@ P={ve (mm}d : Zi; Aiv; — log HJ"”PIH < 1%, for B(v) = P
i=1 p‘- | § E

o Faster rates are realized at larger cardinality.
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Companisons to previous rates using |aylor polynomials in total degree subspaces '
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Proposition. [tran. W.. Zhang '16]

Consider the Taylor series > t,y" of u. Assume that
veNd

Itully < Cp™, Vi €N (1)

Denote by A?"" the set of indices corresponding to s largest bounds in (1). For any £ > 0,
there exists s > 0 depending on £ such that, for all s > s.:

-EGHI-IELI Ai)l,ﬁi

sup llu() = 3 twy”|| < Cule)sexp -( d+e)

yveld Qopt
v

Previous rates:

d

1
Q@ Applying Stechkin estimate in [CDS '11] to our setting: ( [] 1_E1—F1.- )IIPSI_Fi
i=1

Rate is non-asymptotic and applicable for infinite dimensional parameter space.

1/d
@ Optimization of Stechkin rate [BNTT '14]: sexp (—% (3 ni——l Ai) di).

22— ~ 0.63 as s * oo.

T
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Numenical illustration ||
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Example 2: Isotropic 8-dimensional parametric domain

Estimate the truncation error of > p~ Y, where p; =2, V1 <:1<8.
veR®

10°
=
T
AE
T
-
S 10
%
S
E ‘Il'fm _--Stm:hkfﬂ: p=2/3 { Monte-Carlo rate) i
- —-Stechkin: p = 1/5
LE —Stechkin: p = 1/12
—Stechkin: p = 1/16
10 %® | —Optimization E
—Our estimate: £ = 0.3
= T
m_.mi— xact ea'ﬂ:u‘la‘tfmi' ' : :
10° 10° 10" 10"

M
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A new theory to guarantee strong convergence '

e 1 L] iagh ) K AW ) A el A

An operator T : V — V is said to be firmly nonexpansive (FNE) if

ITz —Tyll32 < e —ylZ2 — NI —T)x— (I -T)yll3. Vx,yeV.

Lemma. [Bauschke, Combettes 2010]. Let = > 0. Then J; is row-wise firmly nonexpansive.

Proof.
Since B»(0,1) is a nonempty, closed, convex set, and J, = (I — P, ) where P- is a projection,
S (Prvj — Prw;, wj — Praws)z <0

(P—r 'I'.UJ — Prﬂj, '-U'j — Prﬂj}z E 0

for every v;, w; € C2. Adding, we obtain (P;v; — Prw;,v; — w;)2 > ||Prv; — Prw;||3.
It follows

|J+(v5)=Jdr(w;)lIZ = (I — Pr)vj — (I — Pr)w;||3
= |lv; — wj||3 + [|Prvj — Prw;||3 — 2(v; — w;, Prv; — Prw;)a

2 2
< “”j — Wy "2 — ||Prvj — P w ”21

which implies J; is firmly nonexpansive since (I — J;)=(I — I +Py) = P-.
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A new theory to guarantee strong convergence
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Theorem. [Dexter, Tran, W. *17].
Let 0 < 7 < 2/||H||2. Then the iterations z**! := J, 0 G-(x¥*) converge strongly to an
element z* € X* from any 2® € CN*{,

Sketch of proof: First-order optimality conditions imply |[(A*(Ax* — u));|lz <1 for all
j € [N] and ®* € X*. Therefore, we partition the index set into

L:={j:I(A"(Az" —u))jll2<1} E:={j:||(A%(A2" —u))jll2=1}.

Easy tosee: L C (supp(x*))®, supp(z*)CE, & LUE=|N|] Va*e X*.
@ Finite convergence for j € L follows arguments from [Hale, Yin, Zhang '08]

©@ We show “angular convergence” for ; € E using the firmly nonexpansive property

©@ Weak convergence has been shown in more general setting, see, e.g., |Daubechies, et al
04|, [Combettes ‘04|, via Opial's Theorem and “asymptotic regularity” of S,

Q Combine the weak and angular convergence to obtain strong convergence

SIAM UQ18 Tutorial — Agril, 2018



Sum over j € [N] with &* := Z?‘;] c;.‘, apply the nonexpansiveness of G and iterate:

ek — 2* 5 < G- (=) — G- (&*)|I3 — & k
k =02 -k 0 * 112
< ll#" — @ —_—r K e < ll27 — 2 — c .
< || 12 S e NN 112 ;}

k-times

Rearrange: Y f_ & < ||® —2*||2 = & — 0, and hence c;‘ —0as k— oo.
—  ——
independent of k

z* . z*
Collinearity & «::j,F -0 = Bf == q(m?,m;) = cos™ ! (—{EJ—J}L) — 0 as k — oo.

-
CHRCHE

Weak convergence = [|z*||2cos6% = (*,22)/|lx3ll2 — (@2, %) /llx3 ||z = |||z as
k — oo (also works when =} = 0, slight change) and ;rj’ are bounded

Use weak and angular convergence to show
k k k k k k
lz5llz — =5l = (“ﬂ?j Iz — ll=; Hzﬂﬂﬁﬂj) +(||ﬂ=j||2f:059j —||:c_‘;||2) 50 as k — oo

e . — —

angular convergence & boundedness weak convergence

Strong convergence follows since

k - k2 2 k ; 2 -
25 — 51z = |25 113 + 125 I3 — 2(=5, 23)2 — 2||=} |3 — 2||=} [z =0 as k — co.
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Q Certified recovery guarantees that combat the curse of dimensionality through new
weighted £; minimization and iterative hard thresholding approaches:

@ Exploit the structure of the sets of best s-terms.

¢ Established through a improved estimate of restricted isometry property (RIP), and proved
for general bounded orthonormal systems.

¢ Can recover the “true” best s-term approximation and not a best weighted s-term (which
requires a weighted version of Stechkin's estimate).

Q@ Joint-sparse recovery enables the simultaneous reconstruction of a set of sparse vectors
with common support, from measurements.

¢ Derived the forward-backward splitting method in this setting

e More work to be done in the convergence theory of these methods

e Recently shown strong convergence for the forward-backward splitting method
o Would like to show strong convergence for Bregman iterations

@ Showed connection between joint-sparse recovery problem and parameterized PDEs

¢ Need more numerical experiments
e Nonlinear parameterized PDEs

« Linear vs. nonlinear stochastic parameterization
e Can be improved with the introduction of a weighted £, regularization (similar to previous work).

© An unified NSP based-condition for a general class of nonconvex minimizations showing
that they are at least as good as £; minimization in exact recovery of sparse signals.
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