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Gaussian Process Regression

Main idea

o Gaussian process emulators (also known as kriging) can be viewed as
a Bayesian version of interpolation.

o We are given f at design points Dy = {u"})_,, obtaining function

values {f(u™)}_;.
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Gaussian Process Regression
Main idea

o Gaussian process emulators (also known as kriging) can be viewed as
a Bayesian version of interpolation.

o We are given f at design points Dy = {u"})_,, obtaining function
values {f(u™)}_;.

@ We interpolate f by a random function fy, where fx is conditioned
such that fy(u") = f(u"), forn=1,...,N.

@ Choosing the distribution of fy as a Gaussian process, we obtain a
Gaussian process emulator.

@ The distribution of fx is chosen to reflect the smoothness and typical
length scales of f.
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Gaussian Process Regression

Simple Derivation [Rasmussen, Williams '06]

@ We assign a prior probability distribution to f: a Gaussian process on
U C R%, with mean m : U — R and covariance kernel
k:UxU—=R:

f~ GP(m(u), k(u,u))

For every u € U, f(u) is a Gaussian random variable with E(f(u)) = m(u)
and Cov(f(u), f(u')) = k(u,u).
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Gaussian Process Regression

Simple Derivation [Rasmussen, Williams '06]

@ We assign a prior probability distribution to f: a Gaussian process on
U C R%, with mean m : U — R and covariance kernel
k:UxU—=R:

I~ GP(TTL(U), k(ua u,))
For every u € U, f(u) is a Gaussian random variable with E(f(u)) = m(u)

and Cov(f(u), f(u")) = k(u,u).

e Conditioning the prior on the given function values {f(u")}._; leads
to the posterior distribution fn ~ GP(m{v(u), kEn(u,u)), with

mf(u) = m(u) + ki ()T K7L (fo —my),
kn (u,u') = k(u,u') — ko (u) 7K e (1),

and (. (u))n = k(1 u"), (K2 = k(u™,u™), (f) = f(u") and

(my)n = m(u™).
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Gaussian Process Regression

Approximation properties

e We have m{v(u”) = f(u") and ky(u",u") =0, formn=1,...,N.
= fy(u") = m{v(u") = f(u"),forn=1,...,N.
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Gaussian Process Regression

Approximation properties

e We have m{v(u") = f(u") and ky(u",u") =0, formn=1,...,N.
= fv(u") = ml(u") = f(u") , forn=1,...,N.

@ The predictive mean m{v is an interpolant of f, and the emulator fn

is a random interpolant of f, reflecting the uncertainty in f away
from the design points Dy.
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Gaussian Process Regression

Approximation properties

e We have m]/\,(u") = f(u") and ky(u",u") =0, formn=1,...,N.
= fy(u") = m{\,(u") = f(u"),forn=1,...,N.

~

@ The predictive mean my; is an interpolant of f, and the emulator fy
is a random interpolant of f, reflecting the uncertainty in f away
from the design points Dy.

@ Under certain regularity assumptions on the design points Dy and
the functions f and fy, we have

1
If = milzw) — 0, and  [[kZ ]2y — O,

as N — oo.
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Gaussian Process Regression

Choice of mean and covariance kernel

@ The mean function m is typically chosen as a polynomial:

m(u) = 23:1 Bq pg(u).
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Gaussian Process Regression

Choice of mean and covariance kernel
@ The mean function m is typically chosen as a polynomial:
m(u) = Zqul Bq pg(u).
@ Covariance kernels frequently used are

» the family of Matérn covariances

o2 u—au ||\ u—u

with smoothness parameter v > 0, marginal variance o2 >0 and
correlation length A > 0.

v=1/2: (rzexp(fw),z/:x : t‘X})(*M).

22

> the family of separable Matérn covariances

ksepMat Uu, U HkMat Uiy U
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Gaussian Process Regression

Choice of mean and covariance kernel
@ The mean function m is typically chosen as a polynomial:
m(u) = Zqul Bq pg(u).
@ Covariance kernels frequently used are

» the family of Matérn covariances

o2 u—au ||\ u—u

with smoothness parameter v > 0, marginal variance o2 >0 and
correlation length A > 0.

v=1/2: (rzexp(fw),z/::x : eX})(*M).

22

> the family of separable Matérn covariances

ksepMat Uu, U HkMat Uiy U

@ The hyper-parameters 0 are unknown a-priori.
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Gaussian Process Regression

Empirical Bayes'

@ We use an empirical Bayes' (or plug-in) approach, where we estimate
values of the hyper-parameters from {f(u") nNzl and plug these into
the posterior distribution fy.

@ This gives a sequence of estimates 0, which can be found via
maximum likelihood estimation, maximum a-posteriori estimation,
cross validation, . ..

@ We assume that there is a true parameter value 6, defined in a
suitable way.
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Convergence bounds

Matern kernels: convergence as N — oo

With design points Dy = {u" n 1, define:
fill distance hp, = max min |u—u"|, hp, ~ N~1/du
DN wel u”GDN H H D,\

mesh ratio pp, = max,ecy Mingnepy |Ju — u™||

0D > 1.
pming g fur —adl] 0

Theorem [Stuart, ALT in prep.]

Under certain regularity conditions, with covariance kernel ky.¢, we have

1F = mi @) 2wy <

min{7,7, +5} max{v +——7’0 N
@™ G T ey + B a0 )

with C' independent of f. Furthermore,

T v X v 57,7:
||kN||L2 < C(HN) mln{ 2 7VN}p$i] {VN+ 2 »0}

v
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Convergence bounds

Separable Matern kernels: convergence as N — oo

Theorem [Stuart, ALT in prep.]

Under certain regularity conditions, with covariance kernel kg at and
e tensor product domain U = [[r_, Ug,
@ Dy chosen as a Smolyak sparse grid,

we have

1f — mf (On)l| 20y <

Oy )N—@n) a(on,K) : s
COnIN ™ 10g NI (] 03 ) + I8 g1 1)

with C' independent of f. Furthermore,

l ) U ~ A~
152 [l L2y < C@n)N—*@N+3 | 1og N|EONK),
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Convergence bounds

Convergence as Oy — 0o

Theorem [Stuart, ALT in prep.]

Under certain regularity conditions, with covariance kernel knpa¢ or ksepMat,
we have for fixed N € N and 8 — 6

Im%(8) — m% (6o)]| 0,

HAU) / HSE )
%X (0) = k™ (80) 20y = O,

for all k / {ki} sufficiently small.
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Application in Bayesian inverse problems

Bayesian posterior distribution

e We are interested in u¥(u) being the posterior distribution in a
Bayesian inverse problem (parameter identification problem):

Y
ZZ(U) x 6—||Z’J_F(u)||l2~—17 (ﬂ-y(u) X e—||y—F(u)\\%_1 71'0(11,)).
0

@ This arises from

» incorporating knowledge on w in a prior distribution pg (with density
7T0),

» observing data y = F'(u) 4+ 7, with noise n ~ N(0,T),

» conditioning 119 on vy, resulting in the posterior distribution p¥ (with
density 7¥).
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Application in Bayesian inverse problems

Approximation with Gaussian process emulators

@ The map F is often very expensive to simulate, e.g. involving the
solution to a differential equation.

o Approximating the data log-likelihood ®(u) = ||y — F(u)||2-, (or
directly F'(u)) with a Gaussian process emulator results in an
approximate posterior distribution ,zf]/v.
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Application in Bayesian inverse problems

Approximation with Gaussian process emulators

@ The map F is often very expensive to simulate, e.g. involving the
solution to a differential equation.

o Approximating the data log-likelihood ®(u) = ||y — F(u)||2-, (or
directly F'(u)) with a Gaussian process emulator results in an
approximate posterior distribution ,uzjv.

@ The error between p¥ and p%; (measured in the Hellinger distance)
. 1/2
can be bounded in terms of ||® — m%HLiO(U) and HkN/ HLEO(U)'

e For more details, see [Stuart, ALT '18].
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