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What is data science?

Conway's Venn Diagram Statistician,
Inventor

H. Hollerith
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Data
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Domain

knowledge Founding fo’r_hér of modern statistics and

statistical genetics, R. A. Fisher

Data science is the re-merging of
compuvutational and statistical thinking in
e the context of domain problems ,



Machine learning (ML):
part of statistics and CS

Prediction: part of stafistics that also invented
Cross-validation (CV) in the 70’s.

First generation ML: prediction + optimization,
with a heavy use of CV



Cross-validation (CV):

to estimate prediction error within one data set

Given a prediction problem with an “exchangeable” data set, CV creates
k “pseudo-replicated” prediction problems:

k-fold Cross Validation Scheme (k=4)

1. Run 2. Run 3. Run 4. Run

CV prediction error is the average over k-fold
(not always a good estimate of the pred. error)



Reasons for ML success

Prediction and cross validation are both natural
and simple conceptually

Data availability
Computing resource availability

Open-source software



ML/Stats Fronftier: inferpretation

CV avoids over-fitting for prediction
PUrPOoseS

CV can result in over-fitting for

explanation purpose
EU's General Data Protection Regulation (2016)

gives a “right” to explanation, and demands ML/Stats
algorithms to be

human interpretable



Data Science Challenges

« Organize and develop ML/Stats/DS knowledge
through first principles that tfake advantage of
computing resources to increase accessibility and
Impacts

* |Integrate better ML/Stats and other approaches not
necessarily probabilistic to solve complex data
problems



Guiding principles for data-intensive science

"Embedded” students/postdocs work on site,
INn the wet lab

Seed scientific problem(s)

v

Generalization

Generalization: workflow, algorithms, theory



Current Framework: PCS workflow
(PCS=Predictability, Computability, and Stability)

« Build on top of machine learning to have
predictability as a first base - check for reality

« Computability as the second base

« Stability as the third base as a minimum requirement
for reproducibility and interpretability, and as an
extension of uncertainty assessment (stat inference)



Three principles of

data science: PCS
(Y. and Kumbier, 2018, in prep) 3

Y. and Barter: book on
data science (2018, in prep)

Rebecca Barter



Stability of Knowledge

“That is why knowledge is prized higher than correct
opinion, and knowledge differs from correct opinion in
being tied down. . .”

-- Plato in Meno



Bernoulli 19(4), 2013, 1484—-1500
DOI: 10.3150/13-BEJSP14

Stability

BIN YU

A platform to integrate a myriad of works in the literature
and to develop new methods ...

It is a minimum requirement for reproducibility and
interpretability, and intervention experiment design.



Stability Principle

Application of Stability Principle needs clearly defined

1. Targei(s) of interest

2. Appropriate perturbation(s) to inputs to the DS cycle, including

to pre-processing methods, EDA, data and/or models/algorithms,
and ad-hoc human decisions

3. Stability measure(s) on the targei(s) after perturbation

Appropriateness of perturbations and stability metrics is
determined based on subject knowledge, experience, judgment,

and data collection process, resource, regulation, interpretability,



“Stability Principle” in the literature

Algorithmic stability: Devroye and Wagner (1979), Kearns and Ron (1999), Bousquet and
Elisseeff (2002), Kutin and Niyogi (2002), Mukherjee et al (2006)....

Model selection: stone (1973), Allen (1973), Shao (1995), Breiman (1996), ...

Sensitivity analysis in Bayesian modeling: Box (1980), Berger (1984), Smith (1984), ...

Causal inference: teamer (1982), Athey and Imbens (2015), Ding and Vanderweele (2015), ...

Lasso or spdarse modeling: Bach (2008), Meinshausen and Buhlmann (2010), Liu, Roeder and
Wasserman (2010), Haury et al (2011), Liet al (2011)...

Clustering: Meilia (2006), von Luxburg (2010), Bubeck (2012)....

Differential privacy: dbwork (200¢), Dwork et al (2015),...

Many UQ considerations seem to be stability considerations...



Stabillity is as fundamental as
predictabillity

« Stability deals with perturbations well beyond

sampling perturbations — it embodies general
robustness

|t allows us to go beyond "true” distribution
postulation

« CLT and other limifing results are stability results



Examples of data perturbation

Cross-validation partition

Bootstrap

Subsampling

Adding small amount of noise to data

Bootstrapping residuals in linear regression and liner
time series models

Block-booftstrap

*Data perturbations through mechanistic simulation
models

*Adversarial examples in deep learning



Examples of model/algorithm
perturbation

Robust statistics models

Semi-parametric models

Lasso and Ridge models

Different modes of a non-convex empirical
minimization

Different versions of Deep Learning algorithms
Different kernel machines

Sensitivity analysis of Bayesian modeling



Causality evidence spectrum

Individual level Group level

Stable, replicable Effect depends on the group

Stability implicit in causal
inference: e.g. SUTVA

PCS workflow: Prediction + stability (+ computability)

-

interpretation + intervention design

18



First example of PCS

Deep netfs meet real neurons:
franster learning and neuron functions

Abbasi-Asl, Chen, Bloniarz, Oliver, Willmore, Gallant, and Y. (in prep, 2018)

Culmination of 3+ years of work

Reza Abbasi-Asl

In collaboration with

Mike Oliver Ben Willmore Jack Gallant "



Interface between
Neuroscience and Deep Learning

 Human visual cortex  Deep convolutional
V4 is a difficult and neural networks

elusive area

anterior/rostral

input layer
hidden layer 1  hidden layer 2

http://cs231n.github.io/assets/nn1/neural_net2.joeg



V1 decoded by Hubel and Wiesel (1959)

V1. orientation and location selectivity, and E .
excitatory and inhibitory regions . '

Nobel Prize in 1981

Electrical signal
from brain

Recording electrode ——»

Visual area
of brain

Visual Cortex

Mapping receptive fields

- \

A\

Q Stimulus




V4: synthetic polar and hyperbolic
gratings and complex shape stimulus

Gcllcjwn’r et al. 1993, 1996 David et al (2006)
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V4: synthetfic convex and concave
boundary stimulus

Two Convex Projections

p——Stimulus Orientation —

Angular

Angular
Separation = 180 Separation = 135
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3

Pasupathy and Connor
1999, 2002

The stimuli were created
by systematically
combining convex and
concave boundary
elements.



Our data collection: 71 V4 neurons

(from the Gallant Lab at UC Berkeley)

using sequences of natural
Images




Related works

Mairal et al (2013-18, in prep): earlier work from us

Parallel developments in the DiCarlo Lab at MIT :
Yamins et al (2014, 2016) and Cadieu et al (2014)
(semi-natural images, predictive modeling)

M N .
t—L

We replicate their predictive results and
aim at interpretation and understanding.

25



Questions to answer

What do V4 neurons do¢

How much do Convolutional Neural Networks
(CNNs) resemble brain functione



Our aims are two-fold

Transfer predictive learning to derive state-of-
art prediction model for our V4 neurons

System neuroscience insights info neurons
through stable interpretation of predictive
models to suggest what V4 neurons do

AS a result, we provide some support for
resemblance of CNNs to primate brain



Transfer learning...

Classificatiorﬁ
tasks
Step 1 000 —
Training CNN
IMAGENET
Images from CNN used in Labels of
\ ImageNet dataset Training for classification task Images
Linear \
regression

Step 2
Feature Extraction
And Fitting

fitting via Ridge

or Lasso

ey

V4 neural
Limited Images .
used Early layers of activity
\.in experiment trained CNN W

Krizhevsky, A., Sutskever, |., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing systems (pp. 1097-1105).




Prediction performance across
different layers of CNN(AlexNet):
N2 works well for V4
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Neural activity

Stable predicted neuron activity
from three deep nets +Lasso
for a particular neuron

0.04 -

- - Measured response A
vosll — Model based on AlexNet ) '

—— Model based on GoogleNet

— Model based on VGG "I
0028 T "

001} !

\
0.00 [ i\

-0.01}

-0.02
0

10

20 30 20 50 &0

Image frame number

70

30



Deep nets meet real neurons

CNN (e.g. AlexNet) + regression gives state-of-art
prediction for V4 neurons — 18 such models

Stability of excitatory images over 18 models and
several compressed models provides testable
(prescriptive) characterizations of V4 neurons

We combat “model-hacking’ via “stability principle”



Neuron E
Excitatory patterns/images

Deeplune
patterns/images
to characterize

Neuron E

Masked Deeplune
patterns




Superheat plot of
DeepTune optimization process

Neuron E

Regression coefficients
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https://github.com/rlbarter/superheat Barter and Y. (2017)



Neuron E seems a curve neuron and
Deeplune images provide intervention stimuli

VGG AlexNet

GoogleNet




Consensus Deeplune

Single model DeepTune: Use gradient ascent to find stimuli
that maximize one of the CNN+Regression model output

Consensus DeepTune: The models have to agree with each
other to create a Deeplune pattern (Stability)

V)] = el gV (@)

35

Neuron E



Stable curve pafterns across
structurally compressed models

Deelune image from

full network
10% compressed
g -
-".*‘

Deeplune images from P N \

compressed networks N2 )
\
/

\S

Abbasi-Als and Y. (2017)




Top curve images from training set
based on a model for neuron E
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Diversity of V4 neurons "OXEED EENEN
via stable Deeplune iImages
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Diversity of V4 pattern selectivity
via stable consensus Deeplune images

Neuron D Neuron E




Second example of PCS

iterafive Random Forests (iRF)
- Infegrated PCS

iterative Random Forests to discover predictive and stable
high-order interactions

Sumanta Basu*®, Karl Kumbier*”, James B. Brown“%"¢ and Bin Yu'?f

To appear in PNAS (2018)

Culmination of 3+ years of work

Open source R implementation: https://cran.r-project.org/web/packages/iRF/



Capturing the form of genomic
Intferactions

Interactions are high-order
and combinatorial in nature

Interactions can vary across
space and time as
biomolecules carry out
different roles in varied
contexts

Interactions exhibit
thresholding behavior,
requiring sufficient levels of
constitutive elements before
activating

Morphogen Conc. (M)

100

...... u----..nl---

q-, mnmu

(Hartenstein, 1993)

(1) sy

(Wolpert, 1969;
Jaeger and Reinitz, 2006)

(Spitz and Furlong, 2006)
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From genomic to statistical interactions

Transcription is initfiated when a collection of
activating TFs achieve sufficient DNA occupancy

!
R(x) = | | Yz > t;}

€S

Order-s$ interaction,

SC{L,....ph 15| =s



iterative Random Forests (IRF)

Basu, Kumbier, Brown and Y. (2018) PNAS.

Project started from Brown'’s 10+ years of empirical
work in genomics using RF and took 3+ years

Developed and tested using extensive simulation
studies based on synthetic and real data with
biologically inspired generative models

IRF output: feature interaction sets with stability scores



iterafive Random Forests (iRF)
core ideas
1. Inferpret RF decision paths
2. Stabilize RF decision paths

3. Assess inferaction stability



Interpreting RF: decrease in Gini Impurity
as importance measure of a feature

Proportion positive
responses

s

Number of
observations

O
O

Ny«

@)

O 0

o O

(77, Np)

(7, Ny)

Decrease in Gini Impurity:

Nl Nfr'

lg(n) = - Io(m) — = - La(mr)

Mean Decrease in Impurity:
On average, how much does

splitting on a feature decrease the
Gini Impurity?




Feature-weighted RF
Amaratunga et al., 2014

Feature
weights

Random Forest:
At each node of the decision tree, uniformly sample
1 2 3 4 5

mtry features to evaluate splitting criteria.

Feature-weighted Random Forest:

At each node of the decision tree, sample mtry I . I [
features with probability proportional to w € RE 1 2 3 4 5§



Generalized RIT:
fast computation uses sparsity

Random Intersection Trees (RIT) or O-1 feature vectors
Shah and Meinshausen (2014)

Input: D, wk

Combining RF and RIT allows us to

evaluate prevalent feature combinations )

on decision paths of RF L ‘ f‘

T;, C{1,...,p) Feature-index setfor leaf node -

Zt f— ) Output: Decision Paths and Predictions

containing observationi =1, ... ,n |
intreet=1,...,T

Random Intersection Trees

A= {() 1} Prediction for the leaf node
Ut ) . . .
containing observationi =1, ... ,n
intreer=1,...,T

S RIT<{ 1t Zit}a O)



Stability bagging

Stability Bagging

OUTDUT feature Draw B Bootstrap Samples
interaction sets with
stability scores:

{5, sta(5)}

S g { ]. 9 v sy p} :;]r‘:gcu [?::;sion Paths & :;]r‘::itlct I:i)::;sion Paths &
B RIT RIT
S ta 1 Z 1 S E Sb Output: Interactions Output: Interactions
b=1

*

Reference: (Breiman, 1996)



Response:
enhancer

status

Scale
prol:

Transcription Factors (TF),

Features

Chromatin marks, DNase activity
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mad AB 2 FDR 1%
med AB 2 FDR 1%
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Drosophila blastoderm embryos:

-  n=7809 genomic sequences

- p=80 ChIP assays (TF binding,
histone modifications)

- Response: enhancer activity

(Bermen et al., 2002; Frise et al.
2010; Fisher et al., 2012; Kvon et
al. 2014)

http://genome.ucsc.edu/cgi-bin/hgTracks?db=hg19




IRF increases stability hence
interpretability while maintaining
predictive accuracy

iRF ROC curve: enhancer
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IRF identifies 20 stable pairwise interactions
iNn Drosophila — 80% are proven physical
inferactions in the literature

interaction (S) sta(S) references

Gt, ZId 1 Harrison et al. (2011); Nien et al. (2011)

Twi, ZId 1 Harrison et al. (2011); Nien et al. (2011)

Gt, Hb 1 Kraut and Levine (1991a,b); Eldon and Pirrotta (1991)
Gt, Kr 1 Kraut and Levine (1991b); Struhl et al. (1992); Capovilla et al. (1992); Schulz

and Tautz (1994)

Gt, Twi 1 Li et al. (2008)

Kr, Twi 1 Li et al. (2008)

Kr, Z1d 0.97  Harrison et al. (2011); Nien et al. (2011)

Gt, Med 097 -

Bed, Gt 0.93  Kraut and Levine (1991b); Eldon and Pirrotta (1991)

Bed, Twi 0.93  Liet al. (2008)

Hb, Twi 0.93  Zeitlinger et al. (2007)

Med, Twi 0.93  Nguyen and Xu (1998)

Kr, Med 0.9 -
D, Gt 087 —

Med, ZId 0.83  Harrison et al. (2011)

Hb, ZId 0.80  Harrison et al. (2011); Nien et al. (2011)

Hb, Kr 0.80  Niisslein-Volhard and Wieschaus (1980); Jickle et al. (1986); Hoch et al. (1991)
D, Twi 073 -

Bed, Kr 0.67  Hoch et al. (1991, 1990)

Bed, ZId 0.63  Harrison et al. (2011); Nien et al. (2011)




Stable intferactions reflect Boolean-type
rules




PCS-related theory:
iterative learning algorithms

Equivalent

<€ >

Algorithmic
stability

Generalization

“Stable algorithms can

not converge too fast...’ Fleeiee]

computability:
convergence rate

* Chen, Jin and Y. (2018) https://arxiv.org/abs/1804.01619
“Stability and convergence trade-off of iterative optimization
algorithms”: optimization error is like computational bias in large scale problems



PCS workflow

Stability is as fundamental as predictability (reality check) in
data science life cycle

PCS workflow documentation: transparent written arguments
for prediction set-up, model/algorithm choices, “appropriate”
perturbations, target, and metric

PCS workflow leads to predictive and stable models for

interpretation and scientific recommendations for intervention
experiments

Structural match of model and domain knowledge
Is essential since we are still in data poor situations relative to
biological complexity, even with big data



Berkeley DS Intellectual and
Organizational Vision

Summary of the 2016 Report by the Faculty
Advisory Board of the Data Science Planning
Initiative

Prepared: 19 August 2016
Cathryn Carson, FAB Chair

Contents

A. Rationale for action: Why Berkeley. why now

B. Recommendations
1. Organizational form: Core and connections
2. Faculty FTE: Campus-wide surge and strategic foci
3. Fundraising pillar and revenue generation

C. Situational challenges and next steps

D. The Faculty Advisory Board

Data8 Spring18 — 1000 students

» Education Program

Data Science Education Program

CS/Stat Faculty
co-creating and co-teaching
data8.org and ds100.org

Interim Dean of a new div:
David Culler

New DS Major coming...

DS100 Spring18: 600+ students
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Links and thanks

Berkeley Data Science FAB report summary
hitps://drive.google.com/open2id=0B8gpOwOSUKG4ANTR5SMVJIWQIhoc2s

https://www.stat.berkeley.edu/~binyu/ps/FAB-ExecutiveSummary?201é.pdf

Berkeley Data Science FAB report
hitps.//drive.google.com/opengid=0B8gpOwOSUKGA4CGRINTZpTzBQRGM
https://www.stat.berkeley.edu/~binyu/ps/FAB2016.pdf
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m) National Institutes of Health
Turning Discovery Into Health

ARO, ONR




