Multi-level and Multi-index Monte Carlo methods for
Uncertainty Quantification

Fabio Nobile
CSQI - Institute of Mathematics, EPFL, Switzerland

SIAM Conference on Uncertainty Quantification
April 16-19, 2018
Garden Grove, California, USA

F. Nobile (EPFL) MLMC and MIMC for UQ



Outline

© Motivating example

@ .

F. Nobile (EPFL) MLMC and MIMC for UQ



Motivating example

UQ in aerodynamic design

Compute aerodynamic coeffs. (lift,
drag, C,) and optimize airfoil
shape in presence of uncertainties
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Forward Uncertainty propagation

@ Random input parameters: y (with given distribution)
o (Complex) Model: £,u = F (e.g. Euler, Navier-Stokes,...)
hence u = u(y) is a random solution
@ Quantity of interest: Q@ = Q(u) (random output, e.g. lift, drag, etc.)
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o (Complex) Model: £,u = F (e.g. Euler, Navier-Stokes,...)
hence u = u(y) is a random solution
@ Quantity of interest: Q@ = Q(u) (random output, e.g. lift, drag, etc.)

Goal: compute p(Q) = E[Q] or other statistical quantities
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Forward Uncertainty propagation

@ Random input parameters: y (with given distribution)
o (Complex) Model: £,u = F (e.g. Euler, Navier-Stokes,...)
hence u = u(y) is a random solution
@ Quantity of interest: Q@ = Q(u) (random output, e.g. lift, drag, etc.)

Goal: compute p(Q) = E[Q] or other statistical quantities

In practice, u is not accessible. Computational model

Lpyup = Fp = computational output  Qn = Q(up)

computational

model
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Forward Uncertainty propagation

@ Random input parameters: y (with given distribution)
@ (Complex) Model: £,u = F (e.g. Euler, Navier-Stokes,...)
hence u = u(y) is a random solution
@ Quantity of interest: Q@ = Q(u) (random output, e.g. lift, drag, etc.)

Goal: compute p(Q) = E[Q] or other statistical quantities

In practice, u is not accessible. Computational model

Lpyup = Fp = computational output  Qn = Q(up)

computational

model

In aerospace dynamics problems the response function y — Qu(u(y)) is
often non smooth, with y possibly high dimensional. Monte Carlo type
sampling techniques preferred.
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Monte Carlo method

o Generate M iid copies y), ... ,y(M ~ y
@ Compute the corresponding outputs Q,S'), i=1,....M
@ Approximate expectation by sample average

M
e = % Z Q,gi) (biased estimator E[1)¢] = E[Qs] # E[Q])
i=1
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Monte Carlo method

o Generate M iid copies y), ... ,y(M ~ y
@ Compute the corresponding outputs Q,S'), i=1,....M

@ Approximate expectation by sample average
M
1 i . .
e = o Z Q,S) (biased estimator E[1)¢] = E[Qs] # E[Q])
i=1

Mean squared error

Var
MSE(uf) := E[(u(Q) — uy'“)?] = M+ E)LI/\[//Qh]
discret. error VG orror
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Monte Carlo method

o Generate M iid copies y), ... ,y(M ~ y
@ Compute the corresponding outputs Q,S'), i=1,....M

@ Approximate expectation by sample average
M
1 i . .
e = o Z Q,g) (biased estimator E[1)¢] = E[Qs] # E[Q])
i=1

Mean squared error

Var
MSE(u}f€) = E[(1(@) — uff°)?] = (BQ ~ @) + 1%
discret. error MC orror

Complexity analysis (error versus cost)
Assume: o |E[Q — Qy]| = O(h%), Var[Q4] = O(1),
@ cost to compute each Qf,i): Ch=0(h)
Then  MSE=0(tol?) = h=0(tol*), M = O(tol?)

_ —
Total work:  Work(u)¢) = C,M < tol~= tol 2
v
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Multilevel Monte Carlo (MLMC) method

Iterated control variate idea [Heinrich 1998], [Giles 2008]

@ Sequence of refined discretizations

ho>h1>...> h

oo 0 0 00

. . @ Sequence of sample sizes

My > My >--- > M,
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Multilevel Monte Carlo (MLMC) method

Iterated control variate idea [Heinrich 1998], [Giles 2008]

@ Sequence of refined discretizations

ho>h1>...> h

@ Sequence of sample sizes

£=0 t=1L My > My >--- > M,

Telescopic sum (denoting Q; = Qp,)

E[Qi] = E[Q] +E[@Q1 — Qo] + ... + E[QL — Q1]
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Multilevel Monte Carlo method

Multilevel Monte Carlo (MLMC) method

Iterated control variate idea [Heinrich 1998], [Giles 2008]

@ Sequence of refined discretizations

ho>h1>...> h

@ Sequence of sample sizes

£=0 t=1L My > My >--- > M,

Telescopic sum (denoting Q; = Qp,)
E[QL] = E[Qo] + E[Q1 — Qo] + .. + E[QL — Q1]

MLMC estimator' estimate each term independently with different sample sizes

N[I_VILMC M Z Q(I ,0) Z(Q(l 1) (l 1 Z QLI ,L) (I_L )

F. Nobile (EPFL) MLMC and MIMC for UQ SIAM UQ18 7




Multilevel Monte Carlo method

Multilevel Monte Carlo (MLMC) method

Iterated control variate idea [Heinrich 1998], [Giles 2008]

@ Sequence of refined discretizations

ho>h1>...> h

. . @ Sequence of sample sizes
t=0 t=1 My > My >--- > M,
Telescopic sum (denoting Q; = Qp,)

E[Qi] = E[Q] +E[@Q1 — Qo] + ... + E[QL — Q1]

MLMC estimator: estimate each term independently with different sample sizes

L M,
1 i i,
Pl =3 2@ =@, Q=0
£=0 i=1
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Multilevel Monte Carlo method

Multilevel Monte Carlo (MLMC) method

Iterated control variate idea [Heinrich 1998], [Giles 2008]

@ Sequence of refined discretizations

ho>h1>...> h

@ Sequence of sample sizes

£=0 t=1L My > My >--- > M,

Telescopic sum (denoting Q; = Qp,)
E[QL] = E[Qo] + E[Q1 — Qo] + .. + E[QL — Q1]

MLMC estimator: estimate each term independently with different sample sizes
L M,g
1 i i
MiwLMC = Z Ve Z(ng )~ Q§—1))v Q-1=0
£=0 i=1

L . B
MSE(1{"™) = (E[Q - Qu])> + W@T[QH]
=0 ’

discret. error level L

statistical error
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Multilevel Monte Carlo method

Multilevel Monte Carlo

o Vp = Var[Q, — Qy—1] (variance of difFerences)
e C; = cost of computing each AQ, (i.6) — Qel £ Q(' 4

Optimal sample sizes M;: [Giles 2008] minimize W = Ez:o C/M, s.t. MSE ~ tol?

M, = [to/—2\/% (Zizo Wﬂ
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Multilevel Monte Carlo method

Multilevel Monte Carlo

o Vp = Var[Q, — Qy—1] (variance of difFerences)
o C; = cost of computing each AQ{"") = Q{"Y) — Q{9

Optimal sample sizes M;: [Giles 2008] minimize W = Ee:o C/M, s.t. MSE ~ tol?
M, = [to/—% [ (Zizo VG vkﬂ

Complexity analysis for hy = hgs¢: [Giles 2008, Cliffe-Giles Scheichl-Teckentrup 2011]

Assume
o [E[Q — Q| = O(hY),
o Vp=Var[Q, — Q1] = (’)(hf), (8 = 2« for smooth problems/noise)
e G,=0(h,"), 2a > min{3,~}

Then, choosing L = O(tol=) and M, as above gives MSE(uMMC) < tol? and

tol =2, B>
Work(jM-MC) Z CeMy < { tol2(log tol)?, B =1
to/_2_¥, B <~

4
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Multilevel Monte Carlo — practical aspects

Remark: MC complexity always improved for optimal choice of M,.
For 3 = 20 we get either O(to/=2) (up to log terms) or O(tol~=).
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Multilevel Monte Carlo method

Multilevel Monte Carlo — practical aspects

Remark: MC complexity always improved for optimal choice of M,.
For /3 = 2a we get either O(to/~?) (up to log terms) or O(tol ™).

To achieve improved complexity, one needs to

@ estimate error decay |[E[Q — Q/]|: ~> needed to determine optimal L

o estimate variance decay V;:  ~  needed to determine optimal {M,}}_,
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Multilevel Monte Carlo — practical aspects

Remark: MC complexity always improved for optimal choice of M,.
For 3 = 2cv we get either O(tol=2) (up to log terms) or O(tol~=).

To achieve improved complexity, one needs to

@ estimate error decay |[E[Q — Q/]|: ~> needed to determine optimal L
o estimate variance decay V;:  ~  needed to determine optimal {M,}}_,

|E[Q — Q]| can be estimated as |}/ — M€ | based on a pilot run
V, can be estimated by sample variance estimator based on pilot runs
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Multilevel Monte Carlo — practical aspects

Remark: MC complexity always improved for optimal choice of M,.
For 3 = 2a we get either O(tol=2) (up to log terms) or O(tol~=).

To achieve improved complexity, one needs to

@ estimate error decay |[E[Q — Q¢]|: ~» needed to determine optimal L
o estimate variance decay V;:  ~  needed to determine optimal {M,}}_,

|E[Q — Q]| can be estimated as |}/ — M€ | based on a pilot run
V, can be estimated by sample variance estimator based on pilot runs

Problem: on the finest levels we should run only very few simulations.
Cost for estimation of V| might dominate the overall cost of the MLMC algorithm.
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Multilevel Monte Carlo method

Multilevel Monte Carlo — practical aspects

Remark: MC complexity always improved for optimal choice of M,.
For 3 = 2a we get either O(tol=2) (up to log terms) or O(tol~=).
To achieve improved complexity, one needs to
@ estimate error decay |[E[Q — Q¢]|: ~» needed to determine optimal L

o estimate variance decay V;:  ~  needed to determine optimal {M,}}_,

|E[Q — Q]| can be estimated as |}/ — M€ | based on a pilot run
V, can be estimated by sample variance estimator based on pilot runs

Problem: on the finest levels we should run only very few simulations.
Cost for estimation of V| might dominate the overall cost of the MLMC algorithm.

Idea: use adaptive algorithms: extrapolate information from previous levels and
correct it when new samples become available.

(Adaptive MLMC [Giles 2015], Continuation MLMC [Collier-HajiAli-N.-vonSchwerin-Tempone 2015])

& miim
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Continuation Multilevel Monte Carlo
[Collier-HajiAli-N.-vonSchwerin-Tempone 2015, Pisaroni-N.-Leyland 2017]

Idea: Solve the problem with decreasing tolerances to/(®) > to/) > ... > tol.
Use collected samples on all levels to improve the estimate of V; and |E[Q — Q¢]|.

@ mm
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Continuation Multilevel Monte Carlo

[Collier-HajiAli-N.-vonSchwerin-Tempone 2015, Pisaroni-N.-Leyland 2017]

Idea: Solve the problem with decreasing tolerances to/(®) > to/) > ... > tol.
Use collected samples on all levels to improve the estimate of V; and |E[Q — Q]|

Estimator V; of V, = Var[AQ,] at iteration j: MAP Bayesian estimator
@ we make the ansatz AQy ~ N(ue, Vi)
@ based on acquired samples at previous iteration, we fit models (least squares)

° ’uznodel — Cah?
° Vemodel _ Cﬁh?
@ We take a Normal-Gamma prior for (i, V¢), with mode in (po%!, v model)
e Then V, is the MAP Bayesian estimator based on the Normal-Gamma prior
and the actual samples acquired at iteration j

& miim
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Continuation Multilevel Monte Carlo

[Collier-HajiAli-N.-vonSchwerin-Tempone 2015, Pisaroni-N.-Leyland 2017]

Idea: Solve the problem with decreasing tolerances to/(®) > to/) > ... > tol.
Use collected samples on all levels to improve the estimate of V; and |E[Q — Q]|

Estimator V; of V, = Var[AQ,] at iteration j: MAP Bayesian estimator
@ we make the ansatz AQy ~ N(ue, Vi)

@ based on acquired samples at previous iteration, we fit models (least squares)
° ’uznodel — Cah?

° Vemodel =cs h?
@ We take a Normal-Gamma prior for (i, V¢), with mode in (po%!, v model)
@ Then V; is the MAP Bayesian estimator based on the Normal-Gamma prior
and the actual samples acquired at iteration j
Effectively, we have

M, =0 V, = V["Ode’ (prior model)
My — oo V, ~ VM (sample variance)

& miim

V, is then used to determine the sample sizes M, for the next iteration.
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Computation of C; and pressure coeff. for RAE2822 airfoil

Parameter || Reference value (r) Uncertainty

Qoo 2.31° TN(r,2%r,90%r,100%r)
Operational Moo 0.729 TN(r,2%r,90%r,110%r)

Poo 101325 [N/m? -

Too 288.5 [K] —

Rs 0.00839 TN(r,2%r,90%r,110%r)
Geometrical Ry 0.00853 TN(r,2%r,90%r, 110%r)

Xs 0.431 TN(r,2%r,90%r,110%r)

Xp 0.346 TN(r,2%r,90%r,110%r)

¥s 0.063 TN(r,2%r,90%r,110%r)

Yo —0.058 TN(r,2%r,90%r, 110%r)

Cs —0.432 -

G 0.699 -

Os —11.607 -

0 —2.227 -

(il |
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Multilevel Monte Carlo method

Computation of C; and pressure coeff. for RAE2822 airfoil

MLMC 5-levels grid hierarchy for the RAE2822 problem.

Level Airfoil nodes Cells T(Qum)ls] (n.cpu)
LO 67 5197 14.4 (18)

L1 131 9968 21.4(22)

L2 259 20850 28.8(28)

L3 515 47476 64.0 (36)

L4 1027 114857 122.1 (44)

L5 2051 283925 314.2 (56)

N SRR
SN

232523252323

R Ry 0 2y gty

o, My

@ .

Inviscid model (Euler); SU? solver (Stanford) [Pisaroni-N.-Leyland CMAME 2017]

C and MIMC for UQ

F. Nobile (




Multilevel Monte Carlo method

MLMC hierarchies and comparison with MC

C, - GEOM(6)+OPER(2)

!

I f @ mm

SEDERALE D LAURANNE
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Robustness of C-MLMC estimator

C-MLMC (ky , k= 0.001)
C-MLMC (ky ks = 0.1)
C-MLMC (ks , bz = 10)
C-MLMC (ky . ky — 1000)

-+ Ref Solution (1¢5 MC samples)
& =0.001

B C-MLMC (ks &y = 1000.0)

0.855.

o
oum
«e

=100 H < 0.

* 0.845
10
.

o0 4
10 0 1 2 3 3 5 6 7 o

level

Variability over 10 repetitions of the C-MLMC algorithm
for different parameters in the Normal-Gamma prior.

Y
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Beyond expectations: computation of central moments

Goal: compute 1,(Q) = E[(Q — E[Q])”]

How to apply and tune MLMC in this case? use h-statistics [Pisaroni-Krumscheid-N.

2017] (alternative approach with biased central moments estimators in [Bierig-Chernov
2015-2016])
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Beyond expectations: computation of central moments

Goal: compute 1,(Q) = E[(Q — E[Q])”]

How to apply and tune MLMC in this case? use h-statistics [Pisaroni-Krumscheid-N.

2017] (alternative approach with biased central moments estimators in [Bierig-Chernov
2015-2016])

Given iid sample Qy = {QW, ..., QM)},

hp(Qu) : unbiased estimator of 1,(Q) with minimal variance
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Beyond expectations: computation of central moments

Goal: compute 1,(Q) = E[(Q — E[Q])”]

How to apply and tune MLMC in this case? use h-statistics [Pisaroni-Krumscheid-N.

2017] (alternative approach with biased central moments estimators in [Bierig-Chernov
2015-2016])

Given iid sample Qy = {QW, ..., QM)},

hp(Qu) : unbiased estimator of 1,(Q) with minimal variance

L
Multilevel estimator: WYME =N " (ho(Qem,) — ho(Qe-1.m,))
=0
with (6@7/\//2, ég_17M£) generated with the same noise (highly correlated)
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MLMC for moments and distributions

Beyond expectations: computation of central moments

Goal: compute 1,(Q) = E[(Q — E[Q])”]

How to apply and tune MLMC in this case? use h-statistics [Pisaroni-Krumscheid-N.
2017] (alternative approach with biased central moments estimators in [Bierig-Chernov
2015-2016])

Given iid sample Qy = {QW, ..., QM)},

hp(Qu) : unbiased estimator of 1,(Q) with minimal variance

L

Multilevel estimator: WYME =N " (ho(Qem,) — ho(Qe-1.m,))
=0
with (O‘g’/\/[e, ég_17M£) generated with the same noise (highly correlated)

L
Mean squared error: MSE(AYMCY = (1,(Q) — 11p(QL))* + Z Vep

’ = M
where V, , = MgV&I‘[hp(égsz) — hp(@—l,Me)]-
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Beyond expectations: computation of central moments

Goal: compute 1,(Q) = E[(Q — E[Q])”]

How to apply and tune MLMC in this case? use h-statistics [Pisaroni-Krumscheid-N.
2017] (alternative approach with biased central moments estimators in [Bierig-Chernov
2015-2016])

Given iid sample Qy = {QW, ..., QM)},

hp(Qu) : unbiased estimator of 1,(Q) with minimal variance

L

Multilevel estimator: WYME =N " (ho(Qem,) — ho(Qe-1.m,))
=0
with (O‘g’/\/[e, ég_17M£) generated with the same noise (highly correlated)

L
V,
Mean squared error: MSE(hY™M) = (1p(Q) — 1p(QL))* + E #
[
=0

where V; , = MVar[hp(Qe,m,) — hp(Qe—1.m,)]-

Same “formal” structure as for expectation, but now we need to estimate 0.

lp(Q) — 11p(Qr)| and Vi, to tune the MLMC algorithm ’
SIAM UQI8 16




Beyond expectations: computation of central moments

Practical algorithm: unbiased estimators V; , of V;, can be computed in closed
[Pisaroni-Krumscheid-N. 2017] form starting from the power terms
M,
— (1) () (1) (1) b
Sap = Z(QZ,MZ + Q1 m, ) (Qum, — Qu’im,)

i=1

F. Nobile (EPFL) MLMC and MIMC for UQ SIAM UQ18 17



MLMC for moments and distributions

Beyond expectations: computation of central moments

Practical algorithm: unbiased estimators \A/g)p of V; , can be computed in closed
[Pisaroni-Krumscheid-N. 2017] form starting from the power terms

M,
San =D _(Qlh, + Q11 (Qlhy, — Q1)
i=1
Complexity result for hy = hgs—*
Assume f12,(Qr) < oo for all £ and there exist a, 8,7 > 0, 2a > min{3,~} s.t.
o |1p(Q) — pp(Qe)| = O(hY),
o V,, = O(h),
C = C (i,l) ("’Z) = O h_"f
° ( ost(Q, ", Q1) (h, "),

Then, taking L = O(tol=) and M, = [tol‘%/ Vé;” (Zi:o v/ Ck Vk,p>—‘ leads to

tol =2, B>
MSE(hY™) S to>  and  W(hY™MC) < < tol 2| |og£to/)|2, B=~
tol=2~ 75", B <7

F. Nobile (EPFL) MLMC and MIMC for UQ SIAM UQ18 17



Beyond expectations: CDF, quantiles, and more

The cumulative distribution function (CDF) of Q can be seen as a parametric
expectation

One could apply MLMC on many values 6; (using the same sample of Q) and
interpolate.

F. Nobile (EPFL) MLMC and MIMC for UQ SIAM UQ18 18



Beyond expectations: CDF, quantiles, and more

The cumulative distribution function (CDF) of Q can be seen as a parametric
expectation

One could apply MLMC on many values 6; (using the same sample of Q) and
interpolate.

Problem: ¢(6, Q) is not smooth ! the variance of the differences,

Vi = Var[¢(8, Q¢) — ¢(8, Qp—1)] will decay slowly. No much gain in using MLMC
vs MC.
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MLMC for moments and distributions

Beyond expectations: CDF, quantiles, and more

The cumulative distribution function (CDF) of Q can be seen as a parametric
expectation

One could apply MLMC on many values 6; (using the same sample of Q) and
interpolate.

Problem: ¢(6, Q) is not smooth ! the variance of the differences,

Vi = Var[¢(8, Q¢) — ¢(8, Qp—1)] will decay slowly. No much gain in using MLMC
vs MC.

Remedies:

@ [Giles-Nagapetyan-Ritter 2015, 2017] smoothing: F.(6) = E[¢.(0, Q)]. Technical
difficulty: € should depend on the required tolerance ~» difficult tuning
of MLMC

@ [Bierig-Chernov 2016] approximate F or pdf based on moments

@ [Krumscheid-N. 2017] anti-derivative approach: F(6) = ®’(6) with —
®(0) = E[o(0, Q)] and ¢(0, ) Lipschitz continuous. ®!

F. Nobile (EPFL) MLMC and MIMC for UQ SIAM UQ18 18




MLMC for moments and distributions

Anti-derivative approach to CDF computation
For any 7 € (0, 1) define

&, (0) = E[6:(60,Q),  ¢:(6,Q) =0+ 1%(@ —o),

Then
FO)=(1-7)0.(0)+7
and MLMC can be effectively used to approximate ®..() and its derivatives.

F. Nobile (EPFL) MLMC and MIMC for UQ SIAM UQ18 19



MLMC for moments and distributions

Anti-derivative approach to CDF computation
For any 7 € (0, 1) define

(O = B0 (0, QL 6:(0,Q) =0+ (@6

Then
FO)=(1-7)0.(0)+7
and MLMC can be effectively used to approximate ®..() and its derivatives.

Moreover, from the approximation of ¢, and its derivatives we can get for free
o pdf: p(#) = F'(6) = (1 - 7)/(6)
e 7-quantile: g, =inf{f : F(0) > 7} = argminycp ¢,(0)
@ Conditional Value at Risk

1 i .
CVaR, = ﬁ/ xdF(x) = min b.(0)

- €

F. Nobile (EPFL) MLMC and MIMC for UQ SIAM UQ18 19



Computing parametric expectations by MLMC

Goal: given ¢(0, Q), approximate ®(6) = E[¢(0, Q)] and its derivatives uniformly
in ©.

12
T
08 |
06 |
04t/
02 f &
i .
0 . . . . .
0 5 10 15 20 2% 30
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Computing parametric expectations by MLMC

Goal: given ¢(6, Q), approximate ®(8) = E[¢(0, Q)] and its derivatives uniformly
in ©.
Interpolation approach:

1.2 -
| - o introduce a grid § = {04,...,0,} C©
osl e a | e compute ®MMC(9), j =1,...,n by MLMC
(same sample of Q, for every 6;)
0.6
MJ/ | ° Interpola:ge values
S el = fope(g )y
& e n .
’ 5 10 15 20 2 30 ¢, = In(q)ﬁ/’LMC(e))
e.g. by spline or polynomial interpolation
Eventuall te also derivati i
ventually, compute also derivatives
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Computing parametric expectations by MLMC

Goal: given ¢(0, Q), approximate ®(6) = E[¢(0, Q)] and its derivatives uniformly
in ©.

Interpolation approach:

- e introduce a grid § = {04,...,0,} C O
e | e compute ®MMC(9), j=1,....n by MLMC
(same sample of Q, for every 6;)

0.8 F

0.6
@ Interpolate values

oy ] MLMC (3\ — {qMLMC
o ) ¢L (9) = {¢L (ej) f:l
.2 | b — A

/ - N —
’ 5 10 5 20 2 30 ¢, = In(q)ﬁ/’LMC(e))

e.g. by spline or polynomial interpolation

Eventuall te also derivati "o,

ventually, compute also derivatives

Y, p dom

A practical algorithm to tune the MLMC hierarchy and achieve
MSE(®,) := E[supgce |®(0) — ®.(0)|?] < tol is proposed in @m
[Pisaroni-Krumscheid-N. in preparation]. Convergence analysis in [Krumscheid-N. 2017]. i
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@ Robust airfoil shape design with MLMC

@ .
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Risk averse optimization

' ScoLE PoLyTECHNIUE
SEDERALE DELALRANNE

F. Nobile (EPFL) MLMC and MIMC



Robust airfoil shape design with MLMC

Risk averse optimization

R: risk measure

Examples
e R(Q) =E[Q] (risk neutral)
o R(Q) = E[Q] + astd[Q)]
° R(Q) = q-[Q] (T-quantile)
o R(Q) = CVaR.[Q]

F. Nobile (EPFL) MLMC and MIMC for UQ



Combining MLMC with CMA-ES

Optimization done by Covariance Matrix Adaptation Evolutionary Algorithm
(CMA-ES)

Generation 1 Generation 2 Generation 3
Generation 4 Generation 5 Generation 6

For each individual at each generation, risk measure computed by MLMC. 6!%%

F. Nobile (EPFL) MLMC and MIMC for UQ SIAM UQ18 23



Airfoil optimization under operating uncertainties

{;nei)rg R[Cp(x)]

s.t Ci(x) = C[, thickness constraint

Ry.o [Co(x)] pep(X) + ¢y (x)
Riuon [Co(X)] | pep(x) + ¢y (%) + pep(x) - vep(x)
RvaRgo CD(X) VaRgg (X)
R cvareo [Co (X)) CVaRc, (x)
\ | Quantity | Reference (r) | Uncertainty |
C, 0.5 —
Operating Moo 0.75 B(2,2,0.1, Mo, — 0.05)
parameters Rec 6.5-10° —
Poo [Pa] 101325 -
Too [K] 288.5 -

-

[ (]
Model: steady state Euler 4+ boundary layer equation (MSES software) L=
s 2



Robust airfoil shape design with MLMC

Deterministic versus Robust optimization

-1.5

-1.0

00 N S S S N [P [ S S S N 00 I N S
) 0.0050.0100.0150.0200.0250.0300.0350.040 0.0050.0100.0150.0200.0250.0300.0350.040 0.0050.0100.0150.0200.0250.0300.0350.040
Cp Cp Cp D R
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Multi-objective optimization under operating uncertainties

P—wain {pey(x) +ocy(x), —pe,(x)+oc,(x)} (Pareto front)

Uncertainties in Mach number and Angle of Attack.

D inistic Optimized Airfoils 11

*  Deterministic Pareto
* RAE-2822
@ Robust Pareto

0.01 0.02 0.03 0.04 0.05
Cp

Robust Optimized Airfoils

[
——
[——
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© Multi Index Monte Carlo method
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Multi Index Monte Carlo method

Often, the computational model involves several
discretization parameters (e.g. spatial mesh size,
time step, domain truncation, model z
simplification, etc.) ]

numerical solution: uj, h=(hY (@)Y

yoeeey

& mm
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Multi Index Monte Carlo method

Often, the computational model involves several
discretization parameters (e.g. spatial mesh size,
time step, domain truncation, model z
simplification, etc.) ]

numerical solution: uj, h= (h(l), e h(d))

o Introduce sequences of refined discretizations:
WY > > > hE’i)

o For /= (f1,...,£q), denote Qy = Q(uhm

(d)
2.is) ¢
[e] o

@ Difference operators 0y
AJ-QZ: Qz— Qi—é}’ If£J>O o
Qp if£=0

d
L 0. o, .
AQ=Q2Q= > (-1 ;
J=1 je{o,1}d
SIAM UQ1E 28




Multi Index Monte Carlo method

Telescopic formula: given finest discretization level [= (L1,...,Lq)

E[Q] =) E[AQ]

<r
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Multi Index Monte Carlo method

Telescopic formula: given finest discretization level [= (L1,...,Lq)
E[Q] =) E[AQ/]
<r

Multi Index idea: compute each expectation independently

M b
M/MC_ZLZEAQ(% Doiil
He = 22w ‘ [BIEREEE

<r ti=1 ,
2
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Multi Index Monte Carlo method

Multi Index Monte Carlo method

Telescopic formula: given finest discretization level [= (L1,...,Lq)
E[Q] =) E[AQ/]
<r

Multi Index idea: compute each expectation independently
141

MIMC ZquAQ'a Lo

<r i=1

Further sparsification: often the set {ZS E} is not the optimal one. Optimized
index sets Z C N can lead to substantial improvement

%1

M%/IIMC — Z MﬂZAQ

[SI i=1

°© 0 o &
S
F. Nobile (EPFL) MLMC and MIMC for UQ SIAM UQ18 29



Complexity analysis
Assume h() = h(') e ,o;>1and
° |]E[AQz]| S Hd hy!
o Var[AQ] < H" hﬁ'
o Cost(AQy) ST, hej"’

These assumptions require some type of “mixed regularity”.

F. Nobile (EPFL) MLMC and MIMC for UQ
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Complexity analysis

Assume h() = he% &;>1and
° |E[AQ[]| STIL, A
o Var[AQ] < Hd hﬁ'
o Cost(AQy) ST, hej"’
These assumptions require some type of “mixed regularity”.

Then, setting n; = log(o;)(ai + %ﬁ) the optimal sets are

I, ={eN: [-a<l}
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Complexity analysis

Assume h(’) = h(') f ,o;>1and
° |IE[AQ€~]| STIL, A
o Var[AQ] S TIL, hﬁ’
o Cost(AQy) STI;h j"’
These assumptions require some type of “mixed regularity”.

Then, setting n; = log(o;)(a; + L5) the optimal sets are

I, ={eN: [-a<l}
Complexity analysis [HajiAli-N -Tempone 2015]

Under the above assumptions, for any tol > 0 there exist L and {M;}; ;. such
that MSE(uMMC ) < tol? and

l'O/_2 if ﬂj > Y, M
tO/_2 ma><j

W( MIMC) <{

| log tol|P, otherwise

with p depending on #{; : wa;ﬁ’ = maxy Wa_kﬁkc}

F. Nobile (EPFL) MLMC and MIMC for UQ SIAM UQ18 30




Multi Index Monte Carlo method

Numerical test

Elliptic equation in 3D with random coefficient and forcing term. Discretization
parameters: mesh sizes in the 3 variables (x, y, z) separately.

10°

1000 "~

10

10°

10°

Running time

10

10°

107!

102 :
1071 107 102 10T 10°

TOL

Y
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Multi Index Monte Carlo method

Numerical test

Elliptic equation in 3D with random coefficient and forcing term. Discretization
parameters: mesh sizes in the 3 variables (x, y, z) separately.

10°

1000 "~

10

10°

Running time

10°

107!

1

02 :
1071 107 102 10T 10°
TOL

MIMC has been used also for particle systems (time discretization + N. of
particles) [HajiAli-Tempone 2017], nested Monte Carlo simulations [Giles 2015], 0
space-time Zakai type SPDEs [Giles-Reisinger 2016].

SIAM UQ18 31
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@ Multilevel Ensemble Kalman Filter

@ .
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Multilevel methods in data assimilation

Lot of recent literature (non-exhaustive list)

@ Bayesian inverse problems [Dodwell-Ketelsen-Scheichl-Teckentrup, 2015],
[Hoang-Schwab-Stuart, 2013], [Jasra-Jo-Nott-Shoemaker-Tempone, 2017], [Jasra-Kamatani-Law-Zhou,
2018]

@ Particle filtering [Jasra-Kamatani-Law-Zhou, 2017]

@ Sequential Monte Carlo [Jasra, 2016], [Beskos-Jasra-Law-Tempone-Zhou, 2017],
[Beskos-Jasra-Law-Marzouk-Zhou, 2017], [DelMoral-Jasra-Law, 2017], [Latz-Papaioannou-Ullmann,
2018]

@ Ensemble Kalman Filter [Hoel-Law-Tempone 2016], [Chernov-Hoel-Law-N.-Tempone 2017]

F. Nobile (EPFL) MLMC and MIMC for UQ SIAM UQ18 33




Filtering problem

o (Q,F,P) complete probability space

@ V: separable Hilbert space of “smooth” functions on D C R? (e.g. H*(D),s > 0)
@ V D V: separable Hilbert space (weaker than V, e.g. L?(D))

& mm
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Filtering problem

o (Q,F,P) complete probability space

@ V: separable Hilbert space of “smooth” functions on D C R? (e.g. H*(D),s > 0)
@ V D V: separable Hilbert space (weaker than V, e.g. L?(D))

Dynamics: (Spatio-temporal random process)
U =W, n=1,2,..., W and / or u° random

e W cLP(Q V), p>2;
o V: [P(Q, V)~ LP(Q,V)and ¥ : LP(Q,V) — LP(Q,V), Lipschitz continuous

‘‘‘‘‘‘

F. Nobile (EPFL) MLMC and MIMC for UQ SIAM UQ18 34




Filtering problem
o (Q,F,P) complete probability space

@ V: separable Hilbert space of “smooth” functions on D C R? (e.g. H*(D),s > 0)
@ V D V: separable Hilbert space (weaker than V, e.g. L?(D))

Dynamics: (Spatio-temporal random process)
U =W, n=1,2,..., W and / or u° random

e W cLP(Q V), p>2;
o V: [P(Q, V)~ LP(Q,V)and ¥ : LP(Q,V) — LP(Q,V), Lipschitz continuous

Observations: y" = Hu" + 1", n" ~ N(,F), H:V—>R™

‘‘‘‘‘‘
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Multilevel Ensemble Kalman Filter

Filtering problem

o (Q,F,P) complete probability space
@ V: separable Hilbert space of “smooth” functions on D C R? (e.g. H*(D),s > 0)
@ V D V: separable Hilbert space (weaker than V, e.g. L?(D))

Dynamics: (Spatio-temporal random process)
U =W, n=1,2,..., W and / or u° random

e W cLP(Q V), p>2;
o V: [P(Q, V)~ LP(Q,V)and ¥ : LP(Q,V) — LP(Q,V), Lipschitz continuous

Observations: y" = Hu" + n", n" ~ N(,F), H:V—>R™
Goal:
@ approximate conditional distribution of 4”7 = u”[y*, ..., y" (filtering distr.)

e compute conditional expectations of functionals: E[Q(4")],
with @ : V — R Lipschitz continuous

F. Nobile (EPFL) MLMC and MIMC for UQ SIAM UQ18 34



Mean Field Ensemble Kalman Filter

Computing the full conditional process " is often out of reach. We consider a
surrogate conditional process V" based on ensemble Kalman Filter updates.

Prediction step

v =w(pmh), o n=1,2,..., 0=u°
@ |
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Mean Field Ensemble Kalman Filter

Computing the full conditional process " is often out of reach. We consider a
surrogate conditional process V" based on ensemble Kalman Filter updates.

Prediction step
v =w(pmh), o n=1,2,..., 0=u°

Compute Covariance operator C" € V ® V (equiv. C": V' — V)
C" = Cov[v"| = E[v" ® v"] — E[v"] ® E[v"]
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Multilevel Ensemble Kalman Filter

Mean Field Ensemble Kalman Filter

Computing the full conditional process " is often out of reach. We consider a
surrogate conditional process V" based on ensemble Kalman Filter updates.
Prediction step

v =w(pmh), o n=1,2,..., 0=u°
Compute Covariance operator C" € V ® V (equiv. C": V' — V)

C" = Cov[v"| = E[v" ® v"] — E[v"] ® E[v"]
Compute Kalman gain K" : R™ — V

K" = C"H*(T + HC"H*)~1
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Multilevel Ensemble Kalman Filter

Mean Field Ensemble Kalman Filter

Computing the full conditional process " is often out of reach. We consider a
surrogate conditional process V" based on ensemble Kalman Filter updates.
Prediction step

v =w(pmh), o n=1,2,..., 0=u°
Compute Covariance operator C" € V ® V (equiv. C": V' — V)

C" = Cov[v"| = E[v" ® v"] — E[v"] ® E[v"]
Compute Kalman gain K" : R™ — V

K" = C"H*(T + HC"H*)~1
Update step (Kalman Filter formula)

v =v"+ K"'(y" — Hv")

with perturbed measurements y" = y" + ", " iy N(0,T)
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Multilevel Ensemble Kalman Filter

Mean Field Ensemble Kalman Filter

Computing the full conditional process " is often out of reach. We consider a
surrogate conditional process V" based on ensemble Kalman Filter updates.
Prediction step

v =w(pmh), o n=1,2,..., 0=u°
Compute Covariance operator C" € V ® V (equiv. C": V' — V)

C" = Cov[v"| = E[v" ® v"] — E[v"] ® E[v"]
Compute Kalman gain K" : R™ — V

K" = C"H*(T + HC"H*)~1
Update step (Kalman Filter formula)

V" =v"+ K"(y" — Hv")

with perturbed measurements y" = y" +#", @"” iy N(0,T)

In practice:

@ Dynamics can not be solved exactly. Introduce sequence of space-time
approx. Wy, £ =0,1,...,L on nested finite dim. spaces V, C V
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Multilevel Ensemble Kalman Filter

Mean Field Ensemble Kalman Filter

Computing the full conditional process " is often out of reach. We consider a
surrogate conditional process V" based on ensemble Kalman Filter updates.
Prediction step

v =w(pmh), o n=1,2,..., 0=u°
Compute Covariance operator C" € V ® V (equiv. C": V' — V)

C" = Cov[v"| = E[v" ® v"] — E[v"] ® E[v"]
Compute Kalman gain K" : R™ — V

K" = C"H*(T + HC"H*)~1
Update step (Kalman Filter formula)

v =v"+ K"(y" — Hv")

with perturbed measurements y" = y" + ", 7" i N(0,T)

In practice:
@ Dynamics can not be solved exactly. Introduce sequence of space-time
approx. Wy, £ =0,1,...,L on nested finite dim. spaces V, C V
e Cov[v"], E[Q(V")] can not be computed exactly either. @ W
Use multilevel Monte Carlo formula
SIAM UQ18 35




Multilevel Ensemble Kalman Filter (MLEnKF)
[Hoel-Law-Tempone 2016] (finite dim. case), [Chernov-Hoel-Law-N.-Tempone 2017] (OO dim. Case)

On each discretization level £ =0,1,..., L consider M, coupled particles
(vé()vf D) EVex Vi, i=1,...,M,.
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Multilevel Ensemble Kalman Filter

Multilevel Ensemble Kalman Filter (MLEnKF)

[Hoel-Law-Tempone 2016] (finite dim. case), [Chernov-Hoel-Law-N.-Tempone 2017] (OO dim. Case)

On each discretization level £ =0,1,..., L consider M, coupled particles
(vé()vf D) EVex Vi, i=1,...,M,.

Prediction step: v;’(i) = \Ug(\A/Z_l’(i),w(i’Z)), g() = M,°
v = w070, w000y, ) =y
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Multilevel Ensemble Kalman Filter

Multilevel Ensemble Kalman Filter (MLEnKF)
[Hoel-Law-Tempone 2016] (finite dim. case), [Chernov-Hoel-Law-N.-Tempone 2017] (OO dim. Case)

On each discretization level £ =0,1,..., L consider M, coupled particles
(vé()vf D) EVex Vi, i=1,...,M,.

Prediction step: v;’(i) = \Ug(\A/Z_l’(i),w(i’Z)), g() = M,°

PO = (@0 L00), 0 =y

Compute covariance by ML formula (with v/ = () — i E vy

M,
Cw = Zlei{ D) g g _ gnli) ) gn 1} EV, @V
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Multilevel Ensemble Kalman Filter

Multilevel Ensemble Kalman Filter (MLEnKF)

[Hoel-Law-Tempone 2016] (finite dim. case), [Chernov-Hoel-Law-N.-Tempone 2017] (OO dim. Case)

On each discretization level £ =0,1,..., L consider M, coupled particles
(vé()vf D) EVex Vi, i=1,...,M,.

Prediction step: v;’(i) = \Ug(\A/Z_l’(i),w(i’Z)), g() = M,°

PO = (@0 L00), 0 =y

Compute covariance by ML formula (with v/ = () — i E vy

L M,
n 1 on, (i o,
CML:ZM(,,lz{VK()@VZ()_V/ (1)®V/ 1} eEVL®V,
/=0 i i=1

Compute Kalman gain: K, = Co H*(T + (HC[, H*), ) L i R™ — V.
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Multilevel Ensemble Kalman Filter (MLEnKF)

[Hoel-Law-Tempone 2016] (finite dim. case), [Chernov-Hoel-Law-N.-Tempone 2017] (OO dim. Case)

On each discretization level £ =0,1,..., L consider M, coupled particles
(vé()vf D) EVex Vi, i=1,...,M,.

Prediction step: v;’(i) = \llg(\?;_l’(i),w("’é)), g() = M,°
v = w070, w000y, ) =y

Compute covariance by ML formula (with v/ = () — i E vy

L M,
n 1 on, (i o,
CML:ZM(,,lz{VK()@VZ()_V/ (1)®V/ 1} eEVL®V,
/=0 i i=1

Compute Kalman gain: K, = Co H*(T + (HC[, H*), ) L i R™ — V.
Update particles positions

000 = v L MK (770 — @), s=60-1

with perturbed measurements y™() = y" 4 m() () B N(0,T)
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Multilevel Ensemble Kalman Filter (MLEnKF)

[Hoel-Law-Tempone 2016] (finite dim. case), [Chernov-Hoel-Law-N.-Tempone 2017] (OO dim. Case)

On each discretization level £ =0,1,..., L consider M, coupled particles
(vé()vf D) EVex Vi, i=1,...,M,.

Prediction step: v"’ M — \Ilp(A"_l’(i) ("’Z)) Vg’(i) = M,°
vé 1 —\W 1(An 1() wl )), vg(l =M1

Compute covariance by ML formula (with v/ = () — i E vy

L M,
n 1 on, (i o,
CML:ZM(,,lz{VK()@VZ()_V/ (1)®V/ 1} eEVL®V,
/=0 i i=1

Compute Kalman gain: K, = Co H*(T + (HC[, H*), ) L i R™ — V.
Update particles positions
000 = v O 4 MKy (770 = H ), s=t0-1

with perturbed measurements y™() = y" 4 fm(), ﬁ"*(i) B N(0,T)

H
Compute cond. expectation: [i}, [Q] =5, M% > Q(\?é7 ) ) — Q¥ (1)) ®!
SIAM UQI8 36




Multilevel Ensemble Kalman Filter

Multilevel Ensemble Kalman Filter (MLEnKF)

Complexity analysis [Chernov-Hoel-Law-N.-Tempone 2017] (generalizes [Hoel-Law-Tempone 2016])
Assume: @ infy,cy, [lu— uglly < CAY |lullv, Vu e V
o [W(u) = Ve(w) @) = O(h;"?), Yu € LP(Q, V)

o Cost to compute each pair (Ve ,ve 1) is O(h, ")

@ WV, Lipschitz continuous in V; uniformly in /.

Then, for any tol > 0 there exist L and {M,}5_, such that

A3 [Q] — E[Q(V")]l| o) = O(tol|log tol|")

and
tol—? if B>~
W(finn[Q]) S { tol 2| log tol* if B =1~
tol 772 if B <

Remark: for the standard EnKF we can show the cost-to-accuracy bound

n —2—75
W (pgaelQ]) S tol "7 F72
ST UQEE 5




A numerical example

Linear stochastic heat equation

du=Au+BdW,  (t,x)e (0,T]x (0,1)
u(0, x) = up(x), x €(0,1)
u(t,0) = u(t,1)=0, te (0, T]

irioq: -orthonormal eigenfunctions ot —A,; irioq1. elgenvalues
{9 ol L?(D)-orth | eigenfuncti f —A {)\J}j’ol i I
B=Y,\"p®¢;, b=%+e e=103
o = ij_2+é¢j

o y" = u(t,,0.5) + N(0, 1)

o Qu)=22;0=>;(u, )2

o V=H%(0,1), V=H7(0,1)

e T =1/4, N =40 observation times
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A numerical example

Numerical Approximation
@ Spectral approx. in space: Vy = span{¢1, ..., ¢y, } with N, = 2¢ = h[l
@ Exponential Euler method in time with At, = hy = 2-¢
@ Assumptions in complexity result verified with 3 =2, v =2

complexity: W(a,[Q]) < tol 2| log(tol)[®

W 10°
1%}
=
107
108
107" 10° 10' 102 10° 0 !(Pfl!
runtime [s] e

F. Nobile (EPFL) MLMC and MIMC for UQ SIAM UQ18 39



Outline

@ Conclusions
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Conclusions

@ Multilevel Monte Carlo can be used effectively to compute expectations,
central moments, CDFs, quantiles, superquantiles of output quantities of
interest.

@ Robust adaptive algorithms are available to tune on the fly the ML hierarchy
and control the overall accuracy of the result.

@ MLMC methods have been successfully employed in aerodynamic uncertainty
quantification and robust airfoil design.

@ The Multi-index Monte Carlo construction is a very powerful generalization of
the MLMC method and can lead to substantial computational savings
whenever mixed type regularities are available for the problem at hand.

@ We have proposed a multilevel version of Ensemble Kalman Filter for
spatio-temporal processes.

@ W
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