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Irradiance forecasting

Large Solar Power Ramps

>20 MW Ramps
20 in 5 min
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e Several 20 MW ramps taking about 5 minutes
e A 20 MW is about equivalent to the demand of 10,000 homes
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Forecast system

Remove Perturb
iIrradiance

Assimilation

Advection

e Each ensemble member has unique cloud field and cloud motion

field
e The LETKF and EnKF are used for assimilation

e |rradiance perturbation and divergence removal will be discussed

later
(eg. Hunt et al., 2007)(eg. Burges et al., 1998)
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e Each ensemble member has unique cloud field and cloud motion

field
e The LETKF and EnKF are used for assimilation
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later
(eg. Hunt et al., 2007)(eg. Burges et al., 1998)
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Sensor data
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Time of day

« 15 Solar arrays

12 Irradiance sensors

» Data is collected approximately every 5
minutes

 Normalized by clear sky
expectation
« Unitless and detrended




Satellite images

time: 2014-04-15 09:00:00-07:00

» Geostationary satellite images (GOES-15)

* Available every 15 minutes

« Spatial resolution of 1 km#

» Converted to clear sky index (normalized
rragiance)




Satellite data

Pixel value
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Optical flow

2014-05-29 13:30:00-07:00 = 2014-05-29 14:00:00-07:00
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« (Choose features on the satellite image based on the gradient of the image and the
Image s windowed variance
 lrack teatures to estimate the cloud motion field




Numerical Weather Prediction (NWP)

It has an inner domain with a horizontal resolution of 1.8 km which covers

Arizona and New Mexico
« We will use U and V wind components from vertical level with highest

relative humidity




Optimal interpolation of ground sensors
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P — leECDlr"?
W=PH'(R+HPH')™!
x* = x? + W(y — Hx?)

« (Ground data is sparse but accurate.

« Satellite derived CSl fields are available on a large scale, but less accurate.

« Take semi-empirical (SE) model as background and assimilate ground
sensors using optimal interpolation

Clear-Sky Index
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Optimal interpolation of ground sensors
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« (Ground data is sparse but accurate.

« Satellite derived CSl fields are available on a large scale, but less accurate.

« Take semi-empirical (SE) model as background and assimilate ground
sensors using optimal interpolation

Clear-Sky Index
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Different choices of C

J2.55°N

32.4°N

32.25°N

32.1°N

31.95°N

32.55°N

32.4°N

32.25°N

J2.1°N

31.95°N

Spatial Covanance Analysis

T“;

111.4°W 111.2°W 111°W 110.8°W 110.6°W

ww

111.4°W 111.2°W 111°W 110.8°W 110.6°W

1.40

1.10

0.95

0.80

0.65

a.50

035

020

B B b bhBE&BEGR B

Clear-Sky Index

13

5= ‘/(1'--' — 22+ (% — 95

Correlation based on spatial
distance between locations
Produces gradient which is not
seen in original satellite image

Correlation Matrix
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Distance based difference in
normalized satellite value, z.
Produces analysis which is
more physically meaningful
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Advection model

A lypical weather model must track many things:  *|

« Wind in three directions ao|
* Density

» Pressure

« [emperature

» Moisture

Simplification is needed to run operational forecasts. Previous studies have shown
that satellite advection out performs NWP for short term (3-6 hour) forecasts.

« lrack only 2D wind at cloud layer

« Advect clouds represented as normalized pixel value

» Update wind fields hourly based on a numerical weather model

« Use 3@ order R-K method in time and 4" order special derivative based on WRF
advection scheme

(Kalnay, 2002)(Perez et al., 2010)
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Normalized irradiance perturbation
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Create random function with desired random properties
Target only those parts of the image which you wish to perturb
In our case, we target cloudy areas to capture changes taking place inside

and on the edges of clouds

16

09091

07273

0.5455

-03636

-01818

0 0000

Lnitiess




Ensemble of perturbed fields

Member 1

Member 2




Overview
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Data summary

Data Availability

60 Minutes

. >

1000000000 s

23
Satellite Image?

)
Optical Flow
[:] WRF Winds
/

Ground data is available every 5 minutes
Satellite data are available every 15 minutes (5 minutes with GOES-17)
Optical flow vectors are available with every new satellite image

Wind fields coming from numerical weather prediction are available

every hour
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Forecast system

Remove FPerturb
Divergence Irradiance
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Advection = Assimilation

Ensemble Ensemble

e Each ensemble member has unigue cloud field and cloud motion field
e The LETKF is used to assimilate large amounts of observations such as

when assimilating WRF wind fields
¢ The EnKF is used to assimilate small amounts of observations such as

sparse optical flow
(eg. Hunt et al., 2007)(eg. Burges et al., 1998)




An example day: May 29" 2014
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Assimilate optical flow data
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Assimilate optical flow to improve cloud motion field
The analysis cloud motion field has greater agreement with our optical flow

vectors
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Forecasting with optical flow
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« Assimilate optical flow to improve wind field
 Removal of divergence further reduces error and improves




Remove divergence with Poisson’s equation

V=-Vo+V
V-V=-V%
ii-Vé =0 on N

V=V+Vé




Forecasting with and without assimilation

LYStance (Kim)
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100 200 300 5 100 200 300 0 100 200 300
Destance (km) Dustance (km) Destance (km)

Comparison of forecasts derived from Numerical Weather Prediction cloud
motion and with optical flow vectors assimilated.
Error is reduced when optical flow vectors are assimilated

A large portion of error reduction come from correct cloud front position
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Forecasting with and without assimilation

Smoothed NWM
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« Comparison of forecasts derived from Numerical Weather Prediction cloud
motion and with optical flow vectors assimilated.

« Error is reduced when optical flow vectors are assimilated

« A large portion of error reduction come from correct cloud front position




Error time series

60 minute forecast error
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Error i1s calculated as RMSE between forecasted normalized irradiance and the
actual satellite derived normalized irradiance for a 2240 km?Z area over Tucson.




Summary

Hemove Ferturb
D'I'~;"E*IQEF‘|1:E irradiance

Assimiiation

e Short term irradiance forecasts through combining data from satellites,
ground sensors, numerical weather prediction, and optical flow

e | ETKF allows us to quickly assimilate a large amount of observations

 Assimilation of optical flow introduces convergence which should be
removed

e Error is significantly reduced in comparison to using NWP winds alone
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Summary

Remove Perturd
Divergence Irradiance

Adgvecltion

e Short term irradiance forecasts through combining data from satellites,
ground sensors, numerical weather prediction, and optical flow
e |ETKF allows us to quickly assimilate a large amount of observations

e Assimilation of optical flow introduces convergence which should be
removed

e Error is significantly reduced in comparison to using NWP winds alone




Error time series

15 minute forecast error
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Error i1s calculated as RMSE between forecasted normalized irradiance and the
actual satellite derived normalized irradiance for a 2240 km? area over Tucson.




Forecasting with and without assimilation

LHSEAnCE (Km)
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« Comparison of forecasts derived from Numerical Weather Prediction cloud
motion and with optical flow vectors assimilated.
« Error is reduced when optical flow vectors are assimilated

A large portion of error reduction come from correct cloud front position




Forecasting with optical flow

Optical Flow
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« Assimilate optical flow to improve wind field
 Removal of divergence further reduces error and improves




Wind observation
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* The resulting vectors (scatter plot) can be thought of as observations of the
cloud motion field

« These can then be assimilated into the cloud motion field derived from a
numerical weather model (background)




An example day: May 29" 2014




Forecast system

Perturb
iIrradiance

Analveis
Nalysis

Assimilation
Ensemble

e Each ensemble member has unique cloud field and cloud motion field
e The LETKF is used to assimilate large amounts of observations such as

when assimilating WRF wind fields
¢ The EnKF is used to assimilate small amounts of observations such as

sparse optical flow
(eg. Hunt et al., 2007)(eg. Burges et al., 1998)




Data summary

Data Availability

5 10 15 30 45 60  Minutes
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Satellite Images
)

Optical Flow

D WRF Winds
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Ground data is available every 5 minutes

Satellite data are available every 15 minutes (5 minutes with GOES-17)
Optical flow vectors are available with every new satellite image

Wind fields coming from numerical weather prediction are available
every hour
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Ensemble of perturbed fields




Normalized irradiance perturbation
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» (Create random function with desired random properties
« Target only those parts of the image which you wish to perturb
* In our case, we target cloudy areas to capture changes taking place inside

and on the edges of clouds
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Advection model

A lypical weather model must track many things:

» Wind in three directions
* Density

» Pressure

» lemperature

» Moisture

P 7 05 00 E 10

Simplification is needed to run operational forecasts. Previous studies have shown
that satellite advection out performs NWP for short term (3-6 hour) forecasts.

* Track only 2D wind at cloud layer

« Advect clouds represented as normalized pixel value

« Update wind fields hourly based on a numerical weather model

« Use 3 order R-K method in time and 4™ order special derivative based on WRF
advection scheme

(Kalnay, 2002)(Perez et al., 2010)
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Optimal interpolation of ground sensors
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Ground data is sparse but accurate.

Satellite derived CSl fields are available on a large scale, but less accurate.
Take semi-empirical (SE) model as background and assimilate ground
sensors using optimal interpolation

Clear-Sky Index
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Optical flow
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Choose features on the satellite image based on the gradient of the image and the
Image s windowed variance
Track features to estimate the cloud motion field




Satellite images

time: 2014-04-15 06:00:00-07:00
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Satellite images
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Optical flow
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Choose features on the satellite image based on the gradient of the image and the
Image s windowed variance
Track teatures to estimate the cloud motion field




Optical flow
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Choose features on the satellite image based on the gradient of the image and the
Image 's windowed variance
Track features to estimate the cloud motion field
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Different choices of C
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Optimal interpolation of ground sensors
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Ground data is sparse but accurate.

Satellite derived CSl fields are available on a large scale, but less accurate.
Take semi-empirical (SE) model as background and assimilate ground
sensors using optimal interpolation

Clear-Sky Index
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