

Topics

- Bayesian hierarchical modeling
- Marginal posterior over hyperparameters
- Two examples:
 - Censored data
 - A linear-Gaussian inverse problem
 - * Evaluating ratio of determinants
 - * Comparison with other samplers and regularization (MTC is fastest)
- Conclusions

Bayesian hierarchical modeling

Observed data y depends on latent (field) x via function A

ightharpoonup First stage: model the observation y in terms of latent variables x

$$y|x, \theta \sim \pi(y|x, \theta)$$

with uncertainty in π parameterized by θ .

E.g. when y|Ax is zero-mean Gaussian, $y|x, \theta \sim \mathrm{N}(Ax, \Sigma(\theta))$. (likelihood)

ightharpoonup Second stage: model latent variables x

$$x|\theta \sim \pi(x|\theta)$$

with uncertainty in the model parameterized by θ (prior)

▶ Third stage: model unknown hyperparameters θ

$$\theta \sim \pi(\theta)$$

(hyperprior)

Fitting the model to data

Given measured data y determine (the distribution over) unobserved quantities:

▶ Fit model: full posterior

$$x, \theta | y \sim \pi(x, \theta | y) = \pi(y | x, \theta) \pi(x | \theta) \pi(\theta) / \pi(y)$$

Estimate unknown latent variables: (marginal posterior over latent variables)

$$x|y \sim \int \pi(x, \theta|y) d\theta$$

Or when hyperparameters are of interest (marginal posterior over hyperparameters)

$$\theta | y \sim \int \pi(x, \theta | y) dx$$

Samples $\theta|y$ give access to full posterior via

$$\pi(\boldsymbol{x}, \boldsymbol{\theta}|\boldsymbol{y}) = \pi(\boldsymbol{x}|\boldsymbol{\theta}, \boldsymbol{y})\pi(\boldsymbol{\theta}|\boldsymbol{y})$$

using the full conditional for x. (MTC)

Marginal-then-conditional sampling

Claim: When the full conditional for the latent variables $\pi(x|\theta,y)$ has a known form, then the marginal distribution over hyperparameters $\pi(\theta|y)$ is available for sampling.

Follows since the θ -dependence of the normalizing constant is known.

Draw iid samples from the full posterior by:

1. Sample from the marginal posterior over heta

$$\theta \stackrel{iid}{\sim} \pi(\theta|y)$$

usually low-dimensional, so random-walk MCMC has negligible cost e.g., t-walk.

2. Sample from the full conditional over $oldsymbol{x}$

$$x \sim \pi(x|\theta, y)$$

to give MTC, a.k.a. composition sampling, or two-variate conditional distribution method.

 y_i is observed with right censoring, i.e., if $y_i > a$ then "observation above a" is recorded. Let $y_1 < y_2 < \cdots < y_m$ be the uncensored observations, so n-m censored observations. Introduce latent variables x_i for the unobserved data,

$$y_i = \begin{cases} x_i & \text{if } x_i < a \\ a^+ & \text{if } x_i \ge a \end{cases}$$

Model $x_i \stackrel{iid}{\sim} N(\mu, \lambda^{-1})$, with $\mu | \lambda \sim N(\mu_0, k_0 \lambda)$ and $\lambda \sim Ga(\alpha, \beta)$. $k_0 = \alpha = 1$, $\beta = 0.1$

The full conditional μ , $\lambda | y$, x is a normal-gamma distribution and each $x_i | \mu$, λ , y full conditional is an iid truncated normal distribution.

Conventional approach is block-Gibbs sampling, has increasing dimension with sample size

where
$$\alpha_2 = \alpha_0 + \frac{n}{2}$$
, $k_2 = k_0 + n$, $\mu_2 = \frac{1}{k_2}(k_0\mu_0 + \sum_{i=1}^m y_i + \sum_{i=1}^{n-m} x_i)$, and $\beta_2 = \beta + \frac{1}{2}(k_0\mu_0^2 - k_2\mu_2^2 + \sum_{i=1}^m y_i^2 + \sum_{i=1}^{n-m} x_i^2)$.

A linear Gaussian inverse problem (image deblurring)

Data y is a blurry 256×256 gray-scale photograph of Jupiter in the methane band (780nm).

Estimate the 'true' unblurry image, x.

Use the satellite (upper right) as PSF k, so semi-blind deconvolution.

$$y = k * x + \eta = Ax + \eta$$

In the continuous setting this is the prototypical ill-posed inverse problem; k is square integrable $\Rightarrow A$ is Hilbert-Schmidt \Rightarrow compact

Trace and log determinant

The marginal posterior for heta can be written

$$\pi(\boldsymbol{\theta}|\boldsymbol{y}) \propto \delta^{n/2} \exp\left(-\frac{1}{2}g\left(\lambda\right) - \frac{\gamma}{2}f\left(\lambda\right)\right) \pi(\boldsymbol{\theta})$$

where $\lambda = \delta/\gamma$, and the functions $f(\lambda) = (A^Ty)^T((A^TA)^{-1} - (A^TA + \lambda L)^{-1})(A^Ty)$ and $g(\lambda) = \log \det(A^TA + \lambda L)$

are uni-variate, monotonic, smooth, analytic (periodic case shown)

Trace and log determinant

The marginal posterior for heta can be written

$$\pi(\boldsymbol{\theta}|\boldsymbol{y}) \propto \delta^{n/2} \exp\left(-\frac{1}{2}g\left(\lambda\right) - \frac{\gamma}{2}f\left(\lambda\right)\right) \pi(\boldsymbol{\theta})$$

where $\lambda = \delta/\gamma$, and the functions $f(\lambda) = (A^Ty)^T((A^TA)^{-1} - (A^TA + \lambda L)^{-1})(A^Ty)$ and $g(\lambda) = \log \det(A^TA + \lambda L)$

are uni-variate, monotonic, smooth, analytic (periodic case shown)

Sampling the full conditional for \boldsymbol{x}

For the example

$$\boldsymbol{x}|\boldsymbol{\theta},\boldsymbol{y}\sim \mathsf{N}\left((\boldsymbol{A}^T\boldsymbol{A}+(\delta/\gamma)\boldsymbol{L})^{-1}\boldsymbol{A}^T\boldsymbol{y},(\gamma\boldsymbol{A}^T\boldsymbol{A}+\delta\boldsymbol{L})^{-1}\right)$$

Independent $x|\theta,y$ computed by RTO (randomize then optimize), i.e. solving the generalized deconvolution eqns with random RHS

$$(\gamma \mathbf{A}^{\mathsf{T}} \mathbf{A} + \delta \mathbf{L}) \mathbf{x} = \gamma \mathbf{A}^{\mathsf{T}} \mathbf{y} + w$$

where $w = v_1 + v_2$ with independent $v_1 \sim \mathrm{N}\left(0, \gamma \boldsymbol{A}^\mathsf{T} \boldsymbol{A}\right)$ and $v_2 \sim \mathrm{N}\left(0, \delta \boldsymbol{L}\right)$

Requires one linear solve

A linear Gaussian inverse problem (image deblurring)

Data y is a blurry 256×256 gray-scale photograph of Jupiter in the methane band (780nm).

Estimate the 'true' unblurry image, x.

Use the satellite (upper right) as PSF k, so semi-blind deconvolution.

$$y = k * x + \eta = Ax + \eta$$

In the continuous setting this is the prototypical ill-posed inverse problem; k is square integrable $\Rightarrow A$ is Hilbert-Schmidt \Rightarrow compact

Fitting the model to data

Given measured data y determine (the distribution over) unobserved quantities:

Fit model: full posterior

$$x, \theta | y \sim \pi(x, \theta | y) = \pi(y | x, \theta) \pi(x | \theta) \pi(\theta) / \pi(y)$$

Estimate unknown latent variables: (marginal posterior over latent variables)

$$x|y \sim \int \pi(x, \theta|y) d\theta$$

Or when hyperparameters are of interest (marginal posterior over hyperparameters)

$$\theta | y \sim \int \pi(x, \theta | y) dx$$

Samples heta|y give access to full posterior via

$$\pi(\boldsymbol{x}, \boldsymbol{\theta}|\boldsymbol{y}) = \pi(\boldsymbol{x}|\boldsymbol{\theta}, \boldsymbol{y})\pi(\boldsymbol{\theta}|\boldsymbol{y})$$

using the full conditional for x. (MTC)

Bayesian hierarchical modeling

Observed data y depends on latent (field) x via function A

ightharpoonup First stage: model the observation y in terms of latent variables x

$$y|x, \theta \sim \pi(y|x, \theta)$$

with uncertainty in π parameterized by θ .

E.g. when y|Ax is zero-mean Gaussian, $y|x, \theta \sim \mathrm{N}(Ax, \Sigma(\theta))$. (likelihood)

ightharpoonup Second stage: model latent variables x

$$x|\theta \sim \pi(x|\theta)$$

with uncertainty in the model parameterized by θ (prior)

ightharpoonup Third stage: model unknown hyperparameters heta

$$\theta \sim \pi(\theta)$$

(hyperprior)

Fitting the model to data

Given measured data y determine (the distribution over) unobserved quantities:

▶ Fit model: full posterior

$$x, \theta | y \sim \pi(x, \theta | y) = \pi(y | x, \theta) \pi(x | \theta) \pi(\theta) / \pi(y)$$

Estimate unknown latent variables: (marginal posterior over latent variables)

$$\boldsymbol{x}|\boldsymbol{y} \sim \int \pi(\boldsymbol{x}, \boldsymbol{\theta}|\boldsymbol{y}) d\boldsymbol{\theta}$$

Or when hyperparameters are of interest (marginal posterior over hyperparameters)

$$\theta | y \sim \int \pi(x, \theta | y) dx$$

Samples heta|y give access to full posterior via

$$\pi(\boldsymbol{x}, \boldsymbol{\theta}|\boldsymbol{y}) = \pi(\boldsymbol{x}|\boldsymbol{\theta}, \boldsymbol{y})\pi(\boldsymbol{\theta}|\boldsymbol{y})$$

using the full conditional for x. (MTC)

Bayesian hierarchical modeling

Observed data y depends on latent (field) x via function A

ightharpoonup First stage: model the observation y in terms of latent variables x

$$y|x, \theta \sim \pi(y|x, \theta)$$

with uncertainty in π parameterized by θ .

E.g. when y|Ax is zero-mean Gaussian, $y|x, \theta \sim \mathrm{N}(Ax, \Sigma(\theta))$. (likelihood)

ightharpoonup Second stage: model latent variables x

$$x|\theta \sim \pi(x|\theta)$$

with uncertainty in the model parameterized by θ (prior)

▶ Third stage: model unknown hyperparameters θ

$$\theta \sim \pi(\theta)$$

(hyperprior)

Fitting the model to data

Given measured data y determine (the distribution over) unobserved quantities:

▶ Fit model: full posterior

$$x, \theta | y \sim \pi(x, \theta | y) = \pi(y | x, \theta) \pi(x | \theta) \pi(\theta) / \pi(y)$$

Estimate unknown latent variables: (marginal posterior over latent variables)

$$x|y \sim \int \pi(x, \theta|y) d\theta$$

Or when hyperparameters are of interest (marginal posterior over hyperparameters)

$$\theta | y \sim \int \pi(x, \theta | y) dx$$

Samples heta|y give access to full posterior via

$$\pi(\boldsymbol{x}, \boldsymbol{\theta}|\boldsymbol{y}) = \pi(\boldsymbol{x}|\boldsymbol{\theta}, \boldsymbol{y})\pi(\boldsymbol{\theta}|\boldsymbol{y})$$

using the full conditional for x. (MTC)

Marginal-then-conditional sampling

Claim: When the full conditional for the latent variables $\pi(x|\theta,y)$ has a known form, then the marginal distribution over hyperparameters $\pi(\theta|y)$ is available for sampling.

Follows since the θ -dependence of the normalizing constant is known.

Draw iid samples from the full posterior by:

1. Sample from the marginal posterior over heta

$$\theta \stackrel{iid}{\sim} \pi(\theta|y)$$

usually low-dimensional, so random-walk MCMC has negligible cost e.g., t-walk.

2. Sample from the full conditional over x

$$x \sim \pi(x|\theta, y)$$

to give MTC, a.k.a. composition sampling, or two-variate conditional distribution method.

 y_i is observed with right censoring, i.e., if $y_i > a$ then "observation above a" is recorded. Let $y_1 < y_2 < \cdots < y_m$ be the uncensored observations, so n-m censored observations. Introduce latent variables x_i for the unobserved data,

$$y_i = \begin{cases} x_i & \text{if } x_i < a \\ a^+ & \text{if } x_i \ge a \end{cases}$$

Model $x_i \stackrel{iid}{\sim} N(\mu, \lambda^{-1})$, with $\mu | \lambda \sim N(\mu_0, k_0 \lambda)$ and $\lambda \sim Ga(\alpha, \beta)$. $k_0 = \alpha = 1$, $\beta = 0.1$

The full conditional μ , $\lambda | y$, x is a normal-gamma distribution and each $x_i | \mu$, λ , y full conditional is an iid truncated normal distribution.

Conventional approach is block-Gibbs sampling, has increasing dimension with sample size

where
$$\alpha_2 = \alpha_0 + \frac{n}{2}$$
, $k_2 = k_0 + n$, $\mu_2 = \frac{1}{k_2}(k_0\mu_0 + \sum_{i=1}^m y_i + \sum_{i=1}^{n-m} x_i)$, and $\beta_2 = \beta + \frac{1}{2}(k_0\mu_0^2 - k_2\mu_2^2 + \sum_{i=1}^m y_i^2 + \sum_{i=1}^{n-m} x_i^2)$.

 y_i is observed with right censoring, i.e., if $y_i > a$ then "observation above a" is recorded. Let $y_1 < y_2 < \cdots < y_m$ be the uncensored observations, so n-m censored observations. Introduce latent variables x_i for the unobserved data,

$$y_i = \begin{cases} x_i & \text{if } x_i < a \\ a^+ & \text{if } x_i \ge a \end{cases}$$

Model $x_i \stackrel{iid}{\sim} N(\mu, \lambda^{-1})$, with $\mu | \lambda \sim N(\mu_0, k_0 \lambda)$ and $\lambda \sim Ga(\alpha, \beta)$. $k_0 = \alpha = 1$, $\beta = 0.1$

The full conditional μ , $\lambda | y$, x is a normal-gamma distribution and each $x_i | \mu$, λ , y full conditional is an iid truncated normal distribution.

Conventional approach is block-Gibbs sampling, has increasing dimension with sample size

where
$$\alpha_2 = \alpha_0 + \frac{n}{2}$$
, $k_2 = k_0 + n$, $\mu_2 = \frac{1}{k_2}(k_0\mu_0 + \sum_{i=1}^m y_i + \sum_{i=1}^{n-m} x_i)$, and $\beta_2 = \beta + \frac{1}{2}(k_0\mu_0^2 - k_2\mu_2^2 + \sum_{i=1}^m y_i^2 + \sum_{i=1}^{n-m} x_i^2)$.

 y_i is observed with right censoring, i.e., if $y_i > a$ then "observation above a" is recorded. Let $y_1 < y_2 < \cdots < y_m$ be the uncensored observations, so n-m censored observations. Introduce latent variables x_i for the unobserved data,

$$y_i = \begin{cases} x_i & \text{if } x_i < a \\ a^+ & \text{if } x_i \ge a \end{cases}$$

Model $x_i \stackrel{iid}{\sim} N(\mu, \lambda^{-1})$, with $\mu | \lambda \sim N(\mu_0, k_0 \lambda)$ and $\lambda \sim Ga(\alpha, \beta)$. $k_0 = \alpha = 1$, $\beta = 0.1$

The full conditional μ , $\lambda | y$, x is a normal-gamma distribution and each $x_i | \mu$, λ , y full conditional is an iid truncated normal distribution.

Conventional approach is block-Gibbs sampling, has increasing dimension with sample size

where
$$\alpha_2 = \alpha_0 + \frac{n}{2}$$
, $k_2 = k_0 + n$, $\mu_2 = \frac{1}{k_2}(k_0\mu_0 + \sum_{i=1}^m y_i + \sum_{i=1}^{n-m} x_i)$, and $\beta_2 = \beta + \frac{1}{2}(k_0\mu_0^2 - k_2\mu_2^2 + \sum_{i=1}^m y_i^2 + \sum_{i=1}^{n-m} x_i^2)$.

Censored data :: MTC

Since the full conditional for latent field is tractable, the marginal posterior for hyperparameters μ , λ is available, and is

$$f(\mu, \lambda | \boldsymbol{y}) \propto \lambda^{\alpha_1 - 1/2} \exp\left(-\lambda \left(\frac{k_1}{2}(\mu - \mu_1)^2 + \beta_1\right)\right) \left(1 - \Phi(\sqrt{\lambda}(a - \mu))\right)^{n - m}$$

where $\alpha_1 = \alpha + \frac{m}{2}$, $k_1 = k_0 + m$, $\mu_1 = \frac{1}{k_1}(k_0\mu_0 + \sum_{i=1}^m y_i)$, $\beta_1 = \beta + \frac{1}{2}(k_0\mu_0^2 - k_1\mu_1^2 + \sum_{i=1}^m y_i^2)$ depend only on the uncensored data.

This is a 2-dim distribution so computational cost of MCMC is independent of sample size, once m, $\sum_{i=1}^{m} y_i$ and $\sum_{i=1}^{m} y_i^2$ evaluated.

Can sample from this distribution using the t-walk and the computational cost will remain almost constant with sample size. Moreover, if IACT remains constant with sample size then CCES (computing cost per effectively-independent sample) also remains constant for increasing n.

A linear Gaussian inverse problem (image deblurring)

Data y is a blurry 256×256 gray-scale photograph of Jupiter in the methane band (780nm).

Estimate the 'true' unblurry image, x.

Use the satellite (upper right) as PSF k, so semi-blind deconvolution.

$$y = k * x + \eta = Ax + \eta$$

In the continuous setting this is the prototypical ill-posed inverse problem; k is square integrable \Rightarrow A is Hilbert-Schmidt \Rightarrow compact

A linear Gaussian inverse problem (image deblurring)

Data y is a blurry 256×256 gray-scale photograph of Jupiter in the methane band (780nm).

Estimate the 'true' unblurry image, $oldsymbol{x}$.

Use the satellite (upper right) as PSF k, so semi-blind deconvolution.

$$y = k * x + \eta = Ax + \eta$$

In the continuous setting this is the prototypical ill-posed inverse problem; k is square integrable $\Rightarrow A$ is Hilbert-Schmidt \Rightarrow compact

Bayesian hierarchical model

Linear forward map, Gaussian noise and prior

$$y|x, \theta \sim N\left(Ax, (\gamma I)^{-1}\right)$$
 (likelihood)
 $x|\theta \sim N\left(\mu, (\delta L)^{-1}\right)$ (prior)
 $\theta = (\gamma, \delta) \sim \pi(\theta)$ (hyperprior)

where γ is precision of measurements, δ is lumping constant in true image.

Common model in spatial statistics

Since

$$\pi(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{\theta}) = \frac{\gamma^{n/2}}{\sqrt{2\pi}} \exp\left\{-\frac{\gamma}{2}\|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|^2\right\} \quad \text{ and } \pi(\boldsymbol{x}|\boldsymbol{\theta}) = \frac{\delta^{n/2}\sqrt{\det \boldsymbol{L}}}{\sqrt{2\pi}} \exp\left\{-\frac{\delta}{2}\boldsymbol{x}^{\mathsf{T}}\boldsymbol{L}\boldsymbol{x}\right\}$$

by conditional Bayes rule, the full conditional over the latent field

$$\pi(\boldsymbol{x}|\boldsymbol{y},\boldsymbol{\theta}) \propto \exp\left\{-\frac{\gamma}{2}\left(\|\boldsymbol{A}\boldsymbol{x}-\boldsymbol{y}\|^2 - \frac{\delta}{\gamma}\boldsymbol{x}^\mathsf{T}\boldsymbol{L}\boldsymbol{x}\right)\right\}$$

is normal

A linear Gaussian inverse problem (image deblurring)

Data y is a blurry 256×256 gray-scale photograph of Jupiter in the methane band (780nm).

Estimate the 'true' unblurry image, x.

Use the satellite (upper right) as PSF k, so semi-blind deconvolution.

$$y = k * x + \eta = Ax + \eta$$

In the continuous setting this is the prototypical ill-posed inverse problem; k is square integrable $\Rightarrow A$ is Hilbert-Schmidt \Rightarrow compact

Bayesian hierarchical model

Linear forward map, Gaussian noise and prior

$$y|x, \theta \sim N\left(Ax, (\gamma I)^{-1}\right)$$
 (likelihood)
 $x|\theta \sim N\left(\mu, (\delta L)^{-1}\right)$ (prior)
 $\theta = (\gamma, \delta) \sim \pi(\theta)$ (hyperprior)

where γ is precision of measurements, δ is lumping constant in true image.

Common model in spatial statistics

Since

$$\pi(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{\theta}) = \frac{\gamma^{n/2}}{\sqrt{2\pi}} \exp\left\{-\frac{\gamma}{2}\|\boldsymbol{A}\boldsymbol{x}-\boldsymbol{y}\|^2\right\} \quad \text{ and } \pi(\boldsymbol{x}|\boldsymbol{\theta}) = \frac{\delta^{n/2}\sqrt{\det \boldsymbol{L}}}{\sqrt{2\pi}} \exp\left\{-\frac{\delta}{2}\boldsymbol{x}^{\mathsf{T}}\boldsymbol{L}\boldsymbol{x}\right\}$$

by conditional Bayes rule, the full conditional over the latent field

$$\pi(\boldsymbol{x}|\boldsymbol{y},\boldsymbol{\theta}) \propto \exp\left\{-\frac{\gamma}{2}\left(\|\boldsymbol{A}\boldsymbol{x}-\boldsymbol{y}\|^2 - \frac{\delta}{\gamma}\boldsymbol{x}^\mathsf{T}\boldsymbol{L}\boldsymbol{x}\right)\right\}$$

is normal

A linear Gaussian inverse problem (image deblurring)

Data y is a blurry 256×256 gray-scale photograph of Jupiter in the methane band (780nm).

Estimate the 'true' unblurry image, x.

Use the satellite (upper right) as PSF k, so semi-blind deconvolution.

$$y = k * x + \eta = Ax + \eta$$

In the continuous setting this is the prototypical ill-posed inverse problem; k is square integrable $\Rightarrow A$ is Hilbert-Schmidt \Rightarrow compact

Marginal posterior for θ

Lemma 1

$$\pi\left(\boldsymbol{\theta}|\boldsymbol{y}\right) = \frac{\pi\left(\boldsymbol{y}|\boldsymbol{\theta}, \boldsymbol{x}\right) \pi(\boldsymbol{x}|\boldsymbol{\theta}) \pi\left(\boldsymbol{\theta}\right)}{\pi\left(\boldsymbol{x}|\boldsymbol{\theta}, \boldsymbol{y}\right) \pi\left(\boldsymbol{y}\right)}$$

Proof. $\pi(x, y, \theta) = \pi(x|\theta, y) \pi(y|\theta) \pi(\theta)$ and $\pi(x, y, \theta) = \pi(y|x, \theta) \pi(x|\theta) \pi(\theta)$. Since $\pi(y) \neq 0$, the result follows by Bayes rule $\pi(\theta|y) = \pi(y|\theta) \pi(\theta) / \pi(y)$.

Since $\pi(x|\theta,y)$ has known form, x-dependence of RHS can be eliminated (i.e., an algebraic route to integrating over x.)

For general Gaussian-linear model : $\Sigma=$ noise covariance, Q= prior precision

$$\begin{split} &\pi\left(\theta|y\right) \propto \sqrt{\frac{\det(\Sigma^{-1})\det(Q)}{\det(Q+A^T\Sigma^{-1}A)}} \\ &\exp\left\{-\frac{1}{2}(y-A\mu)^T\Sigma^{-1}A\left[(A^T\Sigma^{-1}A)^{-1}-(A^T\Sigma^{-1}A+Q)^{-1}\right]A^T\Sigma^{-1}(y-A\mu)\right\}\pi(\theta) \end{split}$$

Traditional difficulty:: MCMC requires ratios of determinants of Σ^{-1} , Q and $Q + A^T \Sigma^{-1} A$, and differences of arguments of the exponential.

Trace and log determinant

The marginal posterior for heta can be written

$$\pi(\boldsymbol{\theta}|\boldsymbol{y}) \propto \delta^{n/2} \exp\left(-\frac{1}{2}g\left(\lambda\right) - \frac{\gamma}{2}f\left(\lambda\right)\right) \pi(\boldsymbol{\theta})$$

where $\lambda = \delta/\gamma$, and the functions $f(\lambda) = (A^T y)^T ((A^T A)^{-1} - (A^T A + \lambda L)^{-1})(A^T y)$ and $g(\lambda) = \log \det(A^T A + \lambda L)$

are uni-variate, monotonic, smooth, analytic (periodic case shown)

Evaluation of (ratio of) determinants for MCMC

- Periodic boundary conditions (diagonalize matrices by FFT):
 - $\stackrel{\text{\tiny CL}}{-} \text{ Option 1: } \mathcal{O}(n) \text{ calculation: } \det(\boldsymbol{A}^T\boldsymbol{A} + \lambda \boldsymbol{L}) = \Pi_{i=1}^n(Ki^2 + \lambda L_i). \text{ RWM over } \pi(\boldsymbol{\theta}|\boldsymbol{y})$
 - Option 2: $\mathcal{O}(1)$ series expansion of f and g. MWG with bespoke directions over $\pi(\pmb{\theta}|\pmb{y})$
- ► General case: Write $B = A^T A + \lambda L$

$$f^{(r)}(\lambda) = (-1)^{r+1} k! (\mathbf{A}^T \mathbf{y})^T (B^{-1} \mathbf{L})^r B^{-1} (\mathbf{A}^T \mathbf{y}), \qquad r = 1, 2, \dots$$

Using the identity (Gohberg Goldberg Krupnik 2000)

$$\log(\det(I + tF)) = \sum_{r=1}^{\infty} \frac{(-1)^{r+1}}{r!} \operatorname{tr}(F^r) t^r$$

the derivatives of g are

$$g^{(r)}(\lambda) = (-1)^{r+1} \operatorname{tr}((B^{-1}\mathbf{L})^r), \qquad r = 1, 2, \dots$$

Estimate traces via $\operatorname{tr}((B^{-1}\boldsymbol{L})^r) = \operatorname{E}[z^T(B^{-1}\boldsymbol{L})^r z]$, $z_i \stackrel{\text{iid}}{\sim} \operatorname{Unif}(\{-1,1\})$ (Meurant2009)

No determinants need be evaluated!

Comparing algorithms

MTC: First draw (quasi) independent samples from the marginal posterior over θ , $\pi(\theta|y) = \int \pi(x, \theta|y) dx$, then from full conditional over x

Block Gibbs: Gibbs sweep $\theta \sim \pi(\theta|y)$ then $x \sim \pi(x|y,\theta)$ in sequence, repeatedly

One-block: Draw $m{ heta}' \sim \pi(m{ heta}|m{y})$ then $m{x}' \sim \pi(m{x}|m{y},m{ heta}')$ and put $(m{x}',m{ heta}')$ as proposal in MH-MCMC

Regularized inversion: Estimate $\hat{x} = \arg \max_{x} \pi(x|y, \theta)$ with $\lambda = \delta/\gamma$ chosen according to L-curve criterion.

Autocorrelation of $\lambda = \delta/\gamma$ (periodic BC)

8,

Gibbs slowest :: MTC opt. 2 cost per iteration is O(1), all others 1 linear solve per iteration Dimension-independent re-parametrization of Gibbs improves IACT to that of one-block, but increases cost per iteration to 3 linear solves, hence CCES unchanged.

Autocorrelation of $\lambda = \delta/\gamma$ (periodic BC)

8,

Gibbs slowest :: MTC opt. 2 cost per iteration is O(1), all others 1 linear solve per iteration Dimension-independent re-parametrization of Gibbs improves IACT to that of one-block, but increases cost per iteration to 3 linear solves, hence CCES unchanged.

Posterior expectation

đ,

$$\mathbf{E}_{x,\theta|y}\left[h\left(x\right)\right] = \mathbf{E}_{\theta|y}\left[\mathbf{E}_{x|\theta,y}\left[h\left(x\right)\right]\right]$$

which is a weighted sum in θ of expectations over full conditionals in x.

In the linear Gaussian problem any moment may be evaluated this way, i.e. for polynomial h.

The mean further simplifies to

$$E[\boldsymbol{x}|\boldsymbol{y}] = \int (\boldsymbol{A}^T \boldsymbol{A} + \lambda \boldsymbol{L})^{-1} \boldsymbol{A}^T \boldsymbol{y} \, \pi(\lambda|\boldsymbol{y}) \, d\lambda$$

Weights for the numerical integration given by the marginal posterior histogram for λ .

Thank You

Thank You

Take-home messages

- ▶ Don't do Gibbs unless you have a very good reason
- ightharpoonup If the full conditional over x has known form, do MTC
- No restriction on prior
- ▶ For censored data example, sampling is independent of data size
- ▶ For the linear-Gaussian inverse problem ...
 - One linear solve per independent sample is optimal ...
 - ... independent of image dimension
 - Faster than Gibbs (including dimension-independent parametrization),
 one-block, regularization
 - Does not require trace-class prior covariance, nor consistent discretization

Take-home messages

- Don't do Gibbs unless you have a very good reason
- ightharpoonup If the full conditional over x has known form, do MTC
- No restriction on prior
- > For censored data example, sampling is independent of data size
- ► For the linear-Gaussian inverse problem ...
 - One linear solve per independent sample is optimal ...
 - independent of image dimension
 - Faster than Gibbs (including dimension-independent parametrization),
 one-block, regularization
 - Does not require trace-class prior covariance, nor consistent discretization

Posterior expectation

đ,

$$\mathbf{E}_{x,\theta|y}\left[h\left(\mathbf{x}\right)\right] = \mathbf{E}_{\theta|y}\left[\mathbf{E}_{x|\theta,y}\left[h\left(\mathbf{x}\right)\right]\right]$$

which is a weighted sum in θ of expectations over full conditionals in x.

In the linear Gaussian problem any moment may be evaluated this way, i.e. for polynomial h.

The mean further simplifies to

$$E[\boldsymbol{x}|\boldsymbol{y}] = \int (\boldsymbol{A}^T \boldsymbol{A} + \lambda \boldsymbol{L})^{-1} \boldsymbol{A}^T \boldsymbol{y} \, \pi(\lambda|\boldsymbol{y}) \, d\lambda$$

Weights for the numerical integration given by the marginal posterior histogram for λ .

Regularized solution

Bayesian mean image

Total of 201 solves

Total of 84 solves

Dirichlet BC outside border of nuisance pixels, mean image integrates over nuisance pixels Gibbs requires $\gtrsim 2100$ solves, even when dimension-independent form is available

Take-home messages

- Don't do Gibbs unless you have a very good reason
- ightharpoonup If the full conditional over x has known form, do MTC
- No restriction on prior
- > For censored data example, sampling is independent of data size
- ➤ For the linear-Gaussian inverse problem ...
 - One linear solve per independent sample is optimal ...
 - independent of image dimension
 - Faster than Gibbs (including dimension-independent parametrization),
 one-block, regularization
 - Does not require trace-class prior covariance, nor consistent discretization

Thank You

Take-home messages

- Don't do Gibbs unless you have a very good reason
- ightharpoonup If the full conditional over x has known form, do MTC
- No restriction on prior
- > For censored data example, sampling is independent of data size
- ▶ For the linear-Gaussian inverse problem ...
 - One linear solve per independent sample is optimal ...
 - ... independent of image dimension
 - Faster than Gibbs (including dimension-independent parametrization),
 one-block, regularization
 - Does not require trace-class prior covariance, nor consistent discretization

Autocorrelation of $\lambda = \delta/\gamma$ (periodic BC)

ð,

Gibbs slowest :: MTC opt. 2 cost per iteration is O(1), all others 1 linear solve per iteration Dimension-independent re-parametrization of Gibbs improves IACT to that of one-block, but increases cost per iteration to 3 linear solves, hence CCES unchanged.

Trace and log determinant

The marginal posterior for heta can be written

$$\pi(\boldsymbol{\theta}|\boldsymbol{y}) \propto \delta^{n/2} \exp\left(-\frac{1}{2}g\left(\lambda\right) - \frac{\gamma}{2}f\left(\lambda\right)\right)\pi(\boldsymbol{\theta})$$

where $\lambda = \delta/\gamma$, and the functions $f(\lambda) = (A^T y)^T ((A^T A)^{-1} - (A^T A + \lambda L)^{-1})(A^T y)$ and $g(\lambda) = \log \det(A^T A + \lambda L)$

are uni-variate, monotonic, smooth, analytic (periodic case shown)

Trace and log determinant

The marginal posterior for heta can be written

$$\pi(\boldsymbol{\theta}|\boldsymbol{y}) \propto \delta^{n/2} \exp\left(-\frac{1}{2}g\left(\lambda\right) - \frac{\gamma}{2}f\left(\lambda\right)\right)\pi(\boldsymbol{\theta})$$

where $\lambda = \delta/\gamma$, and the functions $f(\lambda) = (A^T y)^T ((A^T A)^{-1} - (A^T A + \lambda L)^{-1})(A^T y)$ and $g(\lambda) = \log \det(A^T A + \lambda L)$

are uni-variate, monotonic, smooth, analytic (periodic case shown)