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Bayesian hierarchical modeling

Obseryed data y depends on latent (field) z via function A

» First stage: model the observation y in terms of |atent variables x
ylz.0 ~ mly|z.0)

with uncertainty in 7 parameterized by 0.
E.g. when y|Ax is zero-mean Gaussian, y|z.0 ~ N(Az. X(0)). (likelihood)

» Second stage: model latent variables x
x|@ ~ m(x|0)
with uncertainty in the model parameterized by 6 (prior)

» Third stage: model unknown hyperparameters 6
6~ 7o)

(hyperprior)




Fitting the model to data

Given,measured data y determine (the distribution over) unobserved quantities:

» Fit model: full posterior
z.0ly ~ 7(z. Bly) = 7(y|z. 0)7(x|0)=(0)/=(y)
» Estimate unknown latent variables: (marginal posterior over latent variables)
x|y ~ fﬁ{z.ﬂ?y;dﬂ
» Or when hyperparameters are of interest (marginal posterior over hyperparameters)
Oly w/fr{:c.ﬂly)da:

Samples 8|y give access to full posterior via

7(z,0|y) = 7(x]0.y)7(0ly)

i — e

using the full conditional for x.




Marginal-then-conditional sampling

Claim: When the full conditional for the latent variables =(x|@.y) has a known form, then

the marginal distribution over hyperparameters 7(8|y) is available for sampling.
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Draw iid samples from the full posterior by:

1. Sample from the marginal posterior over 8
ud |
0~ 70ly)
usually low-dimensional, so random-walk MCMC has negligible cost = ¢

2. Sample from the full conditional over =
T ~ w(z|0.y)

to give MTC, a.k.a. composition sampling, or two-variate conditional distribution method.




Censored data

y; is observed with right censoring, i.e., if y; > a then “observation above a” is recorded.
.

Let y1 < yp < --- < y,n be the uncensored observations, so n — m censored observations.

Introduce latent variables z; for the unobserved data,

r; ifr;<a
Ui =

at ifxr; >a

Model z; % N(. A1), with u|\ ~ N(s0. ko)) and A ~ Ga(a. 3). |

The full conditional p, A|y. x is a normal-gamma distribution and each z;|u. \. y full condi-
tional is an iid truncated normal distribution.

Conventional approach is block-Gibbs sampling, has increasing dimension with sample size

sample . Aly, & by sampling Ay, & ~ Galas, 35) then p|A. y.x ~ N(pa. ko)
sample r;|pu. A.y ~ N(u. A) truncated to r; € [a,00) fori =1...., n—m.

where as = ag + 5, k2 = ko +n, pa = é{kﬂﬂﬂ +Y gk +Y. 3 Zi).and B =8+
- S(kopg —kops + Yy g + X xF).




A linear Gaussian inverse problem (image deblurring)

Data y is a blurry 256 x 256 gray-scale photo-

graph of Jupiter in the methane band (780nm).

Estimate the "true’ unblurry image, .

Use the satellite (upper right) as PSF k, so semi-blind deconvolution.
o — L * X TN = :1.]'- +n

In the continuous setting this is the prototypical ill-posed inverse problem;

k is square integrable = A is Hilbert-Schmidt = compact




Trace and log determinant

The marginal posterior for @ can be written

o 1 ) | |

where A = 4/~, and the functions f(A) = [ATyjlr:IATA'}_i — (ATA + XEJ ) Ary} and
g(\) = logdet(AT A + \L)

are uni-variate, monotonic, smooth, analytic
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The marginal posterior for @ can be written

o 1 ) | |
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g(\) = logdet(AT A + \L)

are uni-variate, monotonic, smooth, analytic




Sampling the full conditional for =

For the example
z|0.y ~N ((ATA +(6/7L) AT y. (hATA+ 513)_[)

Independent x|6. y computed by RTO (randomize then optimize), i.e. solving the zeneralizec

b b =
i1

('?ATA -+ fiL) - A— ‘f-'ATy 4w

where w = vy + vy with independent vy ~ N (U. *",'ATA) and 5 ~ N(0,40L)

Requires one linear solve

Oliver He Reynolds 1996, Wikle Milliff Nvehka Berliner 2001, Lalanne Prévost Chavel 2001, Tan Li
Stoica 2010, Orieux Feéron Giovannelli 2012. Bardsley 2012




A linear Gaussian inverse problem (image deblurring)

Data y is a blurry 256 x 256 gray-scale photo-

graph of Jupiter in the methane band (780nm).

Estimate the "true’ unblurry image, .

Use the satellite (upper right) as PSF k, so semi-blind deconvolution.
y=k*sz+n=Azx+1

In the continuous setting this is the prototypical ill-posed inverse problem;

k is square integrable = A is Hilbert-Schmidt = compact




Fitting the model to data

Given measured data y determine (the distribution over) unobserved quantities:

» Fit model: full posterior
x.0ly ~ m(x,0ly) =wlylx.0)7(x|0)7(0)/7(y)
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using the full conditional for x.
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Bayesian hierarchical modeling

Obseryed data y depends on latent (field) x via function A

» First stage: model the observation y in terms of latent variables z
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» Second stage: model latent variables x
z|0 ~ 7(z|0)
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Fitting the model to data

Given,measured data y determine (the distribution over) unobserved quantities:

» Fit model: full posterior
z.0ly ~ 7(x.Oly) = 7(yl|x.0)7(x|0)=(0) /7 (y)

» Estimate unknown latent variables: (marginal posterior over latent variables)

x|y ~ frr(a:._ﬂ'y} 16

» Or when hyperparameters are of interest (marginal posterior over hyperparameters)
Oly ~ f T(x.0ly)dx

Samples #|y give access to full posterior via

m(z,0ly) = #(x|0.y)7(0)y)

S

using the full conditional for x.




Marginal-then-conditional sampling

Clain: When the full conditional for the latent variables 7(x|0.y) has a known form, then

the marginal distribution over hyperparameters 7(8|y) is available for sampling.
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Draw iid samples from the full posterior by:

1. Sample from the marginal posterior over @
vid
0~ 708ly)
usually low-dimensional, so random-walk MCMC has negligible cost = -

2. Sample from the full conditional over x
x ~ w(z|0.y)

to give MTC, a k.a. composition sampling, or two-variate conditional distribution method.




Censored data

y; is observed with right censoring, i.e., if y; > a then “observation above a” is recorded.
2,

Let y1 < y»p < --- < y,m be the uncensored observations, so n — m censored observations.

Introduce latent variables x; for the unobserved data,

x; ifr;<a
Ui =

at ifx; >a

Model z; & N(u. A~1), with g2\ ~ N{sg. ko)) and A ~ Ga(a. 3).

The full conditional p. A|y. x is a normal-gamma distribution and each z;|u. A, y full condi-
tional is an iid truncated normal distribution.

Conventional approach is block-Gibbs sampling, has increasing dimension with sample size

sample . Aly, by sampling Aly. & ~ Galas, 35) then p|A, y. & ~ N(p12. ko A)
sample x;|u. A.y ~ N(u. A) truncated to r; € [a,00) fori=1,....n —m.

where as = ap + 5. k2 = ko +n, o = -(kopo + X2y 3 + X" 23), and 3y = 3 +
- Mkopd — ka3 + X 2+ X0 D).
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Censored data

y; is observed with right censoring, i.e., if y; > a then “observation above a” is recorded.

E‘ -
Let y1 < y» < --- < y,n be the uncensored observations, so n — m censored observations.
Introduce latent variables x; for the unobserved data,

r; ifr;<a
Ui =

a* ifz; >a

Model z; % N(p. A1), with |\ ~ N(zg. ko)) and A ~ Gala. 3).

The full conditional ., M|y. x is a normal-gamma distribution and each z;|u. A, y full condi-
tional is an iid truncated normal distribution.

Conventional approach is block-Gibbs sampling, has increasing dimension with sample size

sample ji. Aly, x by sampling Aly. & ~ Galas, 35) then p|A. y.x ~ N(j1a. k2 A)
sample z;|p. A,y ~ N(u. A) truncated to r; € |a.o0) fori =1,..., n — m.

where az = ag + 5, k2 = ko +n, o = -(kopo + X%y 4 + X" 2:), and 3 = 3 +
| S(kopg —kaps + Yo yp + Xy )




Censored data :: MTC

Since the full conditional for latent field is tractable, the marginal posterior for hyperparameters

i, A is available, and is
. k ¥ , n—m
£ Aly) oc X~ exp (—A(&(u —m)’ +31)) (1—®(VMa—p)))

where a; = a+73, ky = ko+m, p1 = %(A‘q,ﬂg*{-z:’;; %), 5= ,.-3+%{kgpﬁ—k1y%—‘_-zzll y’)
depend only on the uncensored data.

This is a 2-dim distribution so computational cost of MCMC is independent of sample size,
once m, Y., y; and Y., y” evaluated.

Can sample from this distribution using the t-walk and the computational cost will remain
almost constant with sample size. Moreover, if |ACT remains constant with sample size
then CCES (computing cost per effectively-independent sample) also remains constant for

increasing n.




A linear Gaussian inverse problem (image deblurring)

Data y is a blurry 256 x 256 gray-scale photo-

graph of Jupiter in the methane band (780nm).

Estimate the "true’ unblurry image, .

Use the satellite (upper right) as PSF k, so semi-blind deconvolution.
y — L' X T ||r||l' i ___11? + 1

In the continuous setting this is the prototypical ill-posed inverse problem;

k is square integrable = A is Hilbert-Schmidt = compact




A linear Gaussian inverse problem (image deblurring)

Data y is a blurry 256 x 256 gray-scale photo-

graph of Jupiter in the methane band (780nm).

Estimate the "true’ unblurry image, .

Use the satellite (upper right) as PSF k, so semi-blind deconvolution.
y=k+zx+n=Azx+1

In the continuous setting this is the prototypical ill-posed inverse problem;

k is square integrable = A is Hilbert-Schmidt = compact




Bayesian hierarchical model

Linear, forward map, Gaussian noise and prior

ylz.0 ~ N (Az.(yI)"') (likelihood)
z{0 ~ N (p. (L)"') (prior)
0= (v.0) ~=(0) (hyperprior)

where ~ is precision of measurements, 4 is lumping constant in true image.

Since
/9 1
~ P o 5 e 0"V det L o T
T(ylz.0) = \/‘Eap {—E"A:l: -yl } and 7(z|0) = o exp{—im L;l:}

by conditional Bayes rule, the full conditional over the latent field

5 0
(|iA-’ﬂ = i —_ITLi')}

i T

T(xly.0) x exp {—;

~is normal




A linear Gaussian inverse problem (image deblurring)

Data y is a blurry 256 x 256 gray-scale photo-

graph of Jupiter in the methane band (780nm).

Estimate the "true’ unblurry image, .

Use the satellite (upper right) as PSF k, so semi-blind deconvolution.
P — kxx+ n=Azx -+ i

In the continuous setting this is the prototypical ill-posed inverse problem;

k is square integrable = A is Hilbert-Schmidt = compact




Bayesian hierarchical model

Linear forward map, Gaussian noise and prior

ylz.0 ~ N (Az. (1)) (likelihood)
2|0 ~ N (p_ [5[,)“) (prior)
0 =(v,0) ~7(8) (hyperprior)

where ~ is precision of measurements, 4 is lumping constant in true image.

—

r
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el |

Since
nj2 W s e
m(ylx.0) = - exp {—E“AZ -yl } and 7(z|@) = = exp{—i;r LI}

by conditional Bayes rule, the full conditional over the latent field
o 5 0
T(zly.0) x exp {—3 (||Aa: —y|> - ?ITL.’L‘) }

¥

~ is normal




A linear Gaussian inverse problem (image deblurring)

Data v is a blurry 256 x 256 gray-scale photo-
y E o

graph of Jupiter in the methane band (780nm).

Estimate the "true’ unblurry image, .

Use the satellite (upper right) as PSF k, so semi-blind deconvolution.
Yy = kxx+ N = :LI‘—.'IJ

In the continuous setting this is the prototypical ill-posed inverse problem;

k is square integrable = A is Hilbert-Schmidt = compact




Marginal posterior for ¢/

Lemma 1 | ol
7 (yl|0.x) m(x|0)7(0)

~(zl0.y) 7 (y)

T (Oly) =

Proof. 7(z.y.0) =7 (z|0.y) 7(y|0)7(0) and 7(z.y.0) = 7(y|x.0)x(x|0)7(0).
Since 7(y) # 0, the result follows by Bayes rule 7 (8ly) = = y[ﬂ}:r{ﬂ]f:r{y)- 1

Since 7 (x|0. y) has known form, x-dependence of RHS can be eliminated (1 = 2n alzeoraic

g - il e e o -
jOLILE L = rFdALIT&S -
SULT LU =1 di = WY

For general Gaussian-linear model : X = noise covariance, () = prior precision

| det{E-1)det(Q)
\ det(Q + ATE-14)

m fﬂly ) X
1 L _ _ . = -
E:{p{—s(y—flﬁ}TE L4 [(..4’12 Ly _ (AT 1A+ Q) 1] ATy l(y—:'l#)}ﬁ'(ﬂ)

Traditional difficulty:: MCMC requires ratios of determinants of ¥, Q and Q + ATY 14,

and differences of arguments of the exponential.




Trace and log determinant

The marginal posterior for @ can be written

| e 1 § ﬂ -
7(0ly) o< 6™/ % exp (—aym = gf['\]) 7(0)

where X\ = 4/~, and the functions f()\) = (AT y)T((ATA)' —(ATA+AL) ") (Ay) and
g(\) = logdet(AT A + \L)

- o W

' o

e o !;J‘ i _I':" 1 10’

are uni-variate, monotonic, smooth, analytic (periodic case sho




Evaluation of (ratio of) determinants for MCMC

» Periodic boundary conditions (diagonalize matrices by FFT):
— Option 1: O(n) calculation: det{A” A+ \L) = I, (Ki*+AL;). RWM over =(8|y)
— Option 2: O(1) series expansion of f and g. MWG with bespoke directions over
(0ly)

» General case: Write B = ATA + \L
) = (=) ATy (B ILYB Y (ATy). r=12....

Using the identity (Gohberg Goldberg Krupnik 2000)
log(det(I + ¢tF)) = i )

r=1

tr( F7)t"

r!
the derivatives of g are
g (N = (-1 te((B~1L)"). = s 3

Estimate traces via tr((B~'L)") = Elz' (B~'L) 2], z; ~ Unif ({—1.1}) (Meurant2009)
No determinants need be evaluated!




Comparing algorithms

MTC, First draw (quasi) independent samples from the marginal posterior over 8,
7(8ly) = | 7 (x.0)y) dz, then from full conditional over z

Block Gibbs: Gibbs sweep 8 ~ 7 (8|y) then  ~ 7 (x|y. @) in sequence, repeatedly

One-block: Draw @' ~ = (8|y) then ' ~ = (z|y.#') and put (z'.8') as proposal in MH-
MCMC

Regularized inversion: Estimate * = arg max; w(x|y. @) with A = 4/~ chosen according to

| -curve criterion.




Autocorrelation of \ = o/~ (periodic BC)

= - - - - - - -
- = block Gibbs
=©-one-block
0.8k -&8-M1C option 1
" MTC option 2

aulocorralation

lag

Gibbs slowest :: MTC opt. 2 cost per iteration is O(1), all others 1 linear solve per iteration
Dimension-independent re-parametrization of Gibbs improves IACT to that of one-block, but
increases cost per iteration to 3 linear solves, hence CCES unchanged.
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= - - - - - - -
- = block Gibbs
=©-one-block
0.8k -&8-M1C option 1
" MTC option 2

aulocorralation

lag

Gibbs slowest :: MTC opt. 2 cost per iteration is O(1), all others 1 linear solve per iteration
Dimension-independent re-parametrization of Gibbs improves IACT to that of one-block, but
increases cost per iteration to 3 linear solves, hence CCES unchanged.




Posterior expectation

i

Ezoly lh(z)| = Egy [EI'&H e {I}]J

which is a weighted sum in 8 of expectations over full conditionals in .
In the linear Gaussian problem any moment may be evaluated this way, i.e. for polynomial A.

The mean further simplifies to
Elzly] = / (AT A + AL)"L ATy a(Aly) dA

Weights for the numerical integration given by the marginal posterior histogram for A.
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Take-home messages
> an't do Gibbs unless you have a very goc
B lfﬂthe full conditional over & has known form, do MTC
» No restriction on prior
» For censored data example, sampling is independent of data size

» For the linear-Gaussian inverse problem ...
— One linear solve per independent sample = optim:
— ... independent of image dimension

— Faster than Gibbs (including dimension-independent parametrizat

one-block, regularization

— Does not require trace-class prior covariance, nor consistent discretization
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Posterior expectation

i

Elﬂfﬂ [f! I:I)] = Eﬂiy [E:-E.y [lf lzlﬂ

which is a weighted sum in @ of expectations over full conditionals in .
In the linear Gaussian problem any moment may be evaluated this way, i.e. for polynomial A.

The mean further simplifies to
Elzly] = [(ATA+ L) ATym(Aly) dA

Weights for the numerical integration given by the marginal posterior histogram for A.




Regularized solution Bayesian mean image

Total of 201 solves Total of 84 solves

Dirichlet BC outside border of nuisance pixels, mean image integrates over nuisance pixels

Gibbs requires 2 2100 solves, even when dimension-independent form is available
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