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Background and Motivation

Consider the following one dimensional SDE
dX; = (1 — X2)dt - o X dW,;
where Xg > 0and = <~ < 1. =

e (1 — x?) is not Lipschitz continuous and leads to blow up of solutions in
paths

e X,, 5 <~ < 1 is only Holder continuous.




Issue 1: Euler scheme does not work for non-Lipschitz
continuous drift

L et’'s consider the following SDE:
dX, = — X2 dt + dW,.
Starting from X(0) = Xg = 1/h, h is time step size. Then

Xp = Xo— X2h+ &vVh=~ — & ~ N(0.1)

1
=

. §&~N(0.1)

&3~ N(0.1)

e | he moments of numerical solutions explode when using explicit
schemes.




Numerical Example 1

Example (CIR model)
Consider the following SDE

dX; = (1 — X2)dt - X]dW,. X, =05.

where ~ = 0.5 and ~ = 0.8.

From the drift coefficients, we can get a = 3.
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Numerical Example 2

Example (Two factor Heston Model)

Consider the following SDEs

dX. = (1— X3)dt + XJ dW..

'

dS, = pS.dt + /X:Se(pdWE + /1 — p2dW?). (8)

where W} and W? are two independent standard Brownian motions,
i = 0.5. p = —0.7 and initial values are 5 = 1. Xg = 0.5. Also, ~ takes

value in 0.5 or 0.8.




Assumptions

Consider

-

T T
x,::xr/ b(XS)ds—/ .wx;dwi-%{: y <1
JO JO

(i) The initial condition is such that
E[|X]|*"] < K < . forall p>1.
(i1) There is a positive constant 3 such that
(x — y)(b(x) — b(y)) < 3|x — y|*.
(iii) There exist ; > 0 and a > 1 such that for t € [0. T}

i | | i |

b(x) — b(y)? < Ka(1 + <2 + [y 2)x —y[2.  x..

(iv) The function b(x) is positive when x =0, i.e., b(0) > 0.




Half-order Strong Convergence

Define 0(t) = supycr12  ayife -tk < t}. Let

Zy = Yooy + B(Yo) (T — O(1)) + o Yo(e) (We — Woryy).  (12)
and the numerical solution can be obtained by Y; = |Z;| for t € [0. T].

Suppose that Assumption holds and X; > 0 when t € [0. T|. Suppose also

that Xg = x > 0. Then there exists a positive constant C depending on o,
p and T but not on At such that

sup E[|X;: — Y:|?’] < CAt". p>1.
rc|0.T]




Proof of Theorem

lemma

Assume that {Z; }o<:<T Is given by (12) and assumptions 18 hold. If
% < ~ < 1 and At is sufficiently small, then

sup P(Z, < 0) < Cexp(—At* ).
r<[0.T]




Let p > 0, the numerical scheme Y, has bounded positive moments. i.e.
ElYe/fl] <. for0<t<T.

Especially, for all p > 1 , there exists 2 positive constant C depending on
o, p and T but not on At such that

E[| Yo(r) — Y:|P] < CArP.
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Lemma
Let p > 0, the numerical scheme Y, has bounded positive moments. i.e.

E[|]Ye)ff] <o, for0<t<T.

Especially, for all p > 1 , there exists a positive constant C depending on
o, p and T but not on At such that

E[ YH{ " il YIFP] < CAtP.
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Figure: Example 2 with ~ = 0.8 in different stepsizes
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Numerical Schemes (Cont.)

Now, we consider several cases of b(x):

b(y)
1+ |y|® At

tanh(b(y)At)
At '




Numerical Schemes

Let & ~ N(0.1). We test the numerical examples with the following
schemes:

(1— X:% )ﬂ\t
1+ | X BAL

=
-

Xt; X:-‘. \% E‘EH .

X;, +tanh(At(1 — X2)) - X] VAt .

Xe, + At(1— X2 ) + o X VAL,




Numerical Example 2

Example ( Two factor Heston Model)
Consider the following SDEs

dX; = (1— X3)dt + XJ dW..

dS; = pSedt + /X:Se(pdWE + /1 — p2dW?2). (8)

where W} and W? are two independent standard Brownian motions,
i = 0.5, p=—0.7 and initial values are 59 = 1. X5 = 0.5. Also, ~ takes

value in 0.5 or 0.8.




Assumptions

Consider

-t -t
xr:x.r/ b(XE)d5+/ X7 dW,. =
JO +0

9.

—

(1) The initial condition is such that

Z[;Xoijp] <K< oo, forall p>1.

(i1) There is a positive constant 3 such that

1

(x — y)(b(x) — bly)) < 3lx — y2
(iii) There exist K; > 0 and a > 1 such that for t < [0. T}

b(x) — b(y) 2 < Ki(1+ _x]}'-‘ + vl ) x —y|©. x.)

(iv) The function b(x) is positive when x =0, i.e., b(0) > 0.




Half-order Strong Convergence

-t < t}. Let

Z‘-’ » YH{:I r b[y**lft)(r _ H{r)) g ’T(- Yu,-:,)(\«'l/: i 1"II'J{*-‘I::J)* (12]
and the numerical solution can be obtained by Y; = |Z;| for t € [0. T].

Suppose that Assumption holds and X; > 0 when t € [0. T|. Suppose also

that Xg = x > 0. Then there exists a positive constant C depending on o,
p and T but not on At such that

sup E[|X; — Y:[*] < CAr®. p>1.
r<{0.T]




Proof of Theorem

lemma

Assume that {Z; }o<:<T Is given by (12) and assumptions 18 hold. If
% < ~ < 1 and At is suthaently small, then

sup P(Z; < 0) < Cexp(—At ).
r<[0.T]
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