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Applications: concern about one tail
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Consequences in decision making

Design 1: uncertain response /3

Design 2: uncertain response Z;

pdf of Z;

|

/

pdf of Z,

0.33

-1

Which design is less uncertain, safer?

Concern about upper tail (displacement, stress, cost)
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Using mean and standard deviation?

pdf of Z,

same mean (—0.33) Harry M. Markowitz
same std. dev. (0,87) (www.nobelprize.org)

Designs are equally “good” from this perspective
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But it gets worse..

Design 1: uncertain response W,

Design 2: uncertain response W5

Two possible outcomes:
With probability 0.5: Wy =0and W, =0
With probability 0.5: W = -2 and W, = —1
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But it gets worse..

Design 1: uncertain response W,

Design 2: uncertain response W5

Two possible outcomes:
With probability 0.5: Wy =0and W, =0
With probability 0.5: W = -2 and W, = —1

Obviously, Design 1 better
But, if ranking based on mean + 2 std. dev., Design 2 wins!

Mean plus std. deviation not suitable for decision making
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Today's talk

Describe alternative way of quantifying uncertainty that
focuses on safety, computability; avoids paradoxes

relies on convex analysis

—E[Z]

Ez(a) o

R.T. Rockafellar
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Today's talk (cont.)

Show how to carry out
design optimization under uncertainty

surrogate building using multi-fidelity analysis

with this alternative way of quantifying uncertainty
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Impact in multi-disciplinary 3D hydrofoil design
17 design variables; 5 uncertain parameters
Quantities of interest: hydrodynamical and structural
Multi-fidelity 3D URANSE for turbulent cawtatmg flow, 3D FEM
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Prediction | 0.109  0.139  36.8 —142

Actual 0.060 0.130 37.7 —410

Benchmark | 0.097  0.132 353 —294

Bonfiglio, Royset, Karniadakis, '18
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Alternative way: superquantile risk
For a € [0, 1], the a-superquantile of random variable Z:
R.(Z) = average of (1 — a)100% worst outcomes of Z
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Alternative way: superquantile risk
For a € [0, 1], the a-superquantile of random variable Z:
R.(Z) = average of (1 — a)100% worst outcomes of Z

pdf of Z
a
1—a

-1 RQ(Z)./ 1

a=0: Ry(Z) = E[Z] = expected value (mean) of Z
a =1: R,(Z) = worst outcome of Z that can occur
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1

10 / 47



Alternative way: superquantile risk
For a € [0, 1], the a-superquantile of random variable Z:
R.(Z) = average of (1 — a)100% worst outcomes of Z
pdf of Z

\"

|
-1 Ra(2)/ 1
a=0: Ry(Z) = E[Z] = expected value (mean) of Z
a =1: R,(Z) = worst outcome of Z that can occur

Z; safely below Z, when R, (Z1) < R, (2>)

1

Rockafeller & Uryasev '00, '02 (CVaR); Acerbi & Tasche '02 (exp. shortfall)
Also called AVaR (Fdllmer & Schied '04) in finance and OR
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Return to triangular example

Design 1: uncertain response /3

Design 2: uncertain response Z;

1
pdf of Z; / pdf of Z,
RN
_1.9/ Roc(Zz)‘\ \
-1 Raz)/ 1

Averages of worst 10% outcomes:
Ro.g(Zl) = 0.58 and Ro,g(Z2) =0.28 (better)

Response of Design 2 safely below that of Design 1
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Advantages of superquantile risk (s-risk)

Modeling considerations:

adapts to any level of “safety” (can vary )
focuses on the “bad” tail (promotes resilience)
promotes diversification

connects with dual utility theory

probes deeper than expected utility theory

relates to risk-neutral decisions under stochastic ambiguity

Computational considerations:

preserves convexity (continuity)
easier to find globally optimal designs and decisions
when using s-risk,
optimization under uncertainty “no harder” than deterministic
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Design optimization under uncertainty

Design variables: deterministic vector x
Uncertain parameters: random vector V
System response (quantity of interest): g(x, V)
Cost of design: ¢(x)
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Design optimization under uncertainty

Design variables: deterministic vector x
Uncertain parameters: random vector V
System response (quantity of interest): g(x, V)
Cost of design: ¢(x)

Find design x that

min (x)
subject to Ra(g(x, V)) <t

and other (deterministic) constraints

Resulting design x*: on average in the (1 — «)100% worst
outcomes of g(x*, V), response will not exceed t

(Easily extended to multiple quantities of interests, uncertain cost)
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Role of convexity

If g(x,v) is convex in x for all outcomes v of V:

convex g(x,v)
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Role of convexity

If g(x,v) is convex in x for all outcomes v of V:

convex g(x,v)

convex Ry
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What about failure probability?

Find design x that

min (x)
subject to Prob(g(x, V) >0) <1—«
and other (deterministic) constraints

Common formulation in reliability-based design optimization
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Lack of convexity for failure probability

If g(x,v) is convex in x for all outcomes v of V:

nonconve convex g(x,v)
discontinu
Prob(g(x,

Using failure probability makes optimization harder
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Again return to triangular example

Design 1: uncertain response /3

Design 2: uncertain response Z;

1
pdf of Z; / pdf of Z,
RN
_1.9/ Roc(Zz)‘\ \
-1 Raz)/ 1

Recall: Ry.9(Z1) = 0.58 and Ry.9(Z2) = 0.28 (better)
Prob(Z; > 0) = 0.25 (better) and Prob(Z, > 0) = 0.31

Failure probability doesn’t account for magnitude of exceedance
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..but sometimes failure probability is needed..

Failure probability common in regulatory requirements

Superquantiles lead to a (best) conservative approximation of
failure probability through buffered failure probability
(Rockafellar & Royset '10, Norton et al. '17, Mafusalov et al. '18):

Ra(g(x,V)) <0
<= buffered failure probability of g(x,V) <1—«
= Prob(g(x,V)>0) <1-a

Constraints on s-risk can be reinterpreted in probabilistic terms

19 / 47



Role of convexity

But, g(x, v) may not be convex in x:

nonconvex g(x, v)
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Role of convexity

But, g(x, v) may not be convex in x:

nonconvex g(x,v)

“moderately
nonconvex”

Ra(g(x,V)) .
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Role of convexity

But, g(x, v) may not be convex in x:

nonconvex g(x, v)

“highly
nonconvex
discontinuous”

Prob(g(x,V) > 0)
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Further simplifications
Defining formula for superquantiles (Rockafeller & Uryasev '00, '02):

Ra(g(x. V) = min {50+ ——E[max{0.g(x. V) — yo}] }

23 / 47



Further simplifications
Defining formula for superquantiles (Rockafeller & Uryasev '00, '02):
: 1
Ra(8(x, V) = min {0 + 1=—E[max{0.g(x, V) - yo}] |

If V' has outcomes v, v2, ..., v™ with probabilities p1, p2, ..., Pm,

min ¢(x)
subject to Ra(g(x, V)) <t
can equivalently be replaced by finding x, yg € R,y € R™ that

min (x)

. 1 &
subject to yg + 1 a Z;p;y; <t
1=

gx,v)y =y <yjforalli=1,...m
0<yjforalli=1,..m
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Further simplifications
Defining formula for superquantiles (Rockafeller & Uryasev '00, '02):
: 1
Ra(8(x, V) = min {0 + 1=—E[max{0.g(x, V) - yo}] |

If V' has outcomes v, v2, ..., v™ with probabilities p1, p2, ..., Pm,

min ¢(x)
subject to Ra(g(x, V)) <t
can equivalently be replaced by finding x, yg € R,y € R™ that

min (x)

. 1 &
subject to yg + 1 a Z;p;y; <t
1=

gx,v)y =y <yjforalli=1,...m
0<yjforalli=1,..m

Optimization under uncertainty “no harder” than deterministic
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Risk-adaptive learning and surrogate building
Response g(x, V) costly to compute (high-fidelity simulation)
Leverage approximating responses h(x, V') (low-fidelity simulations)
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Risk-adaptive learning and surrogate building
Response g(x, V) costly to compute (high-fidelity simulation)
Leverage approximating responses h(x, V') (low-fidelity simulations)

Risk-adaptive surrogate building;:
find function f such that g(x, V) safely below f(h(x, V))
i.e., Ry (g(x, V)) < Ra(f(h(x, V)))

Flexibility: h(x, v) vector-valued, possibly hj(x, v) = x;, etc.
Example: h(x,v) = lower-level surrogate and f(h(x,v)) =

ao+a x+c'v+boh(x,v)+a xh(x,v)+ " vh(x,v)+ b[h(x, v)]?
Finding f amounts to finding coefficients ag, a, 3, by, b, ¢, C
Notation: Y = g(x, V), X = h(x, V); view x as “random” over

design space (set-based design)
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Risk-adaptive learning and surrogates (cont.)
Response quantity: random variable Y (high-fidelity simulation)

Approximations: random vector X (low-fidelity simulations)

Find f such that Ry(Y) < Ra(f(X))
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Risk-adaptive learning and surrogates (cont.)

Response quantity: random variable Y (high-fidelity simulation)
Approximations: random vector X (low-fidelity simulations)

Find f such that Ry(Y) < Ra(f(X))

How can this be achieved without being overly conservative?
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Risk-adaptive learning and surrogates (cont.)

Response quantity: random variable Y (high-fidelity simulation)
Approximations: random vector X (low-fidelity simulations)

Find f such that Ry(Y) < Ra(f(X))

How can this be achieved without being overly conservative?

Reasonable: minimize the error of Y — f(X)

But using what measure of error? Least-squares will not do
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Risk-adaptive learning and surrogates (cont.)

Response quantity: random variable Y (high-fidelity simulation)
Approximations: random vector X (low-fidelity simulations)

Find f such that Ry(Y) < Ra(f(X))

How can this be achieved without being overly conservative?

Reasonable: minimize the error of Y — f(X)

But using what measure of error? Least-squares will not do

Superquantile regression possible (but not discussed here)
(Rockafellar, Royset, Miranda '14)
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Risk-adaptive learning algorithm
For simplicity, f(X) = cp + ¢ " X, with ¢ € R¥

Two-step algorithm:

1. Solve min {CTE[X] + R (Y — cTX)} + Allcllx

ceR

2. Set g = Ry(Y — ¢ X)

Step 1 (Residual risk minimization)
convex problem; scalable
problem size is data independent
resembling problem in SVM

Step 2 (s-risk computation)
either 1D convex problem or sorting (quick)

Rockafellar & Royset '15a; Royset, Bonfiglio, Vernengo, Brizzolara '17
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Theoretical results

Conservative surrogate on training data:
For o € (0,1) and (cp, c) computed by risk-adaptive learning,

Ro(Y) < Ra(co + ¢ X)

with (X, Y) distributed according to training data

Rockafellar & Royset '15a
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Theoretical results

Conservative surrogate on training data:
For o € (0,1) and (cp, c) computed by risk-adaptive learning,

Ro(Y) < Ra(co + ¢ X)

with (X, Y) distributed according to training data

Consistency:
For o € (0,1) and (cp, c) computed by risk-adaptive learning,

Ra(Y) < Ra(co + ¢ X) in the limit as training size — oo

with (X, Y) having the actual (true) distribution

Rockafellar & Royset '15a
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Broader landscape: risk-regression connections

Residual risk problem equivalent to quantile regression

Extensions to (regular) measures of risk beyond s-risk

Risk (design) connected with error (regression, prediction)

error €<——> regret
A A
1 1
1 1
1 1
1 1
deviation €&—> risk

Rockafellar & Uryasev '13; Rockafellar & Royset '15a
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Detail: multi-disciplinary 3D hydrofoil design
Surface-piercing super-cavitating hydrofoil

17 design variables; 5 uncertain parameters

Quantities of interest: hydrodynamical and structural

308 high-fidelity 3D URANSE solves

3063 high-fidelity 3D FEM solves

19830 low-fidelity 3D URANSE solves and 3D FEM solves

Bonfiglio, Royset, and Karniadakis '18
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Risk-adaptive learning of lift force

high fidelity output

low fidelity output

Accurate predictions possible
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Risk-adaptive learning of lift force (cont.)

Surrogate has 1438 coefficients to be learned
Sparsity (model selection) across 20 surrogates:
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Risk-adaptive learning of displacement

0.25 T T T T T

0.2r
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high fidelity output

0.05 |

0 0.01 0.02 0.03 0.04 0.05 0.06
low fidelity output

Poor correlation between low- and high-fidelity simulations
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Risk-adaptive learning of displacement (cont.)

Surrogate has 1+44 coefficients to be learned
Sparsity (model selection) across 20 surrogates:
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Uncertainty in surrogates: lift
Not standard deviation, but superquantile deviation!
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Uncertainty in
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Poor low-fidelity: uncertain surrogates, but still conservative
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Design of torpedo hull: seakeeping

Motion of vessel in regular and irregular waves

Torpedo hull fully submerged at medium speed (60kn)

Ongoing w/ L. Bonfiglio, MIT, and G. Karniadakis, Brown Univ.

[m]

=

DA
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Design of torpedo hull: seakeeping (cont.)
Acceleration (pitch) of vessel
1000 high- and low-fidelity simulations (2D strip theory)
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Design of torpedo hull: seakeeping (cont.)
Acceleration (pitch) of vessel
1000 high- and low-fidelity simulations (2D strip theory)
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Design of torpedo hull: seakeeping (cont.)

60 design variables; 3 uncertain parameters
Surrogate has 14128 coefficients to be learned

Sparsity (model selection) across 20 surrogates:

--------
.....

H B . H
0 20 40 60 80 100 120
nz = 1392

Similar surrogate form as before: f(h(x, V)) =
ao+a' x+cv+boh(x,v)+a xh(x,v)+ " vh(x,v)+ b[h(x, v)]?
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Accuracy of surrogates and design improvement

180 deg
0.6 deg

-90 deg 1 90 deg

Actual (red) response between conser-  Optimized (green) com-
vative and nominal (green) predictions pared with benchmark
regardless of wave direction (red) torpedo hull
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Application in earthquake engineering

7 B L L] B
S5m
< B L L] N
Sm
F ® L L ® — Frame B
5m
> B = - ¥ — Frame A
. 6 m . 4m4 6 m ’

12-story reinforced concrete symmetrical frame

High-fidelity: nonlinear time-history analysis

Low-fidelity: linear-time history, pushover, response spectrum
Input uncertainty: ground motion (79 ground motions)
Response quantity: inter-story drift ratio

Ongoing w/ S. Gunay and K. Mosalam, Berkeley
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Accuracy of surrogates

Pushover surrogate: ¢y + cX (PO only)
Full surrogate: ¢y + c1.X1 + &2 X2 + c3X3 (LTH, PO, RS)

Training replicated 10 times

Story 5 drift (%)

Story 12 drift (%)

Surrogate: Full ~ Pushover | Full ~ Pushover
nominal 8.901 8.846 1.896 1.964
conservative 9.189 9.204 2.156 2.321

Actual Rys(Y) 8.344 1.614
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High-dim nonlinear stochastic dynamical system
Venturi-16 system: x;(t) = —x;sinx;_1 — ax; + b, i = 1,...,1000
Random initial condition x(0) = W independent Gaussian

t=0.0 t=1.0 t=4.0
10 10 10
5 5 - 5 ‘Q
20 g0 2 0
5 5 5
10 -10 10
0 5 0 5 10 10 5 0 5 10 10 -5 5 10
T T Eal
10 10 10
5 5 - 5
g0 50 g0
-5 5 5
10 -10 10
0 5 0 5 10 10 5 0 5 10 0 -5 0 5 10
x] T x]

Find surrogate of state 1 at time 20: x3(20)
Ongoing w/ D. Venturi, UC Santa Cruz

42 /47



Risk-adaptive learning in 1000 dimensions
Training of cg + ¢ W using 500 samples; 30 reps; o = 0.8
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Sparsity parameter A = 0.2 (black) and A = 0.1 (red)

43 / 47



Tail-focused Gaussian approximation of pdf

Actual pdf of x1(20)
Ro‘g (x1(20)) = 8.16

log(density)

Upper tails of pdf for

x1(20) (thick blue line)
co + ¢ W (thin lines)
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Summary

Prediction and design based on superquantiles

Promotes safety, resilience, and tractability

Scalable surrogate building from multi-fidelity simulations
Surrogates adapts to decision maker's preferences

Applications in naval architecture, earthquake engineering,
semi-conductor manufacturing (ongoing w/ D. Kouri, Sandia)
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More risk...

MT8 Optimization and Control Under Uncertainty

Drew Kouri
2:30 PM-4:30 PM
Grand Ballroom G - 1st Floor
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