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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}
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Pointwise correspondence

x

y

X Y

Point-wise map t : X → Y
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Functional correspondence

f

g

L2(X ) L2(Y)

Functional map T : L2(X )→ L2(Y)

Ovsjanikov, Ben-Chen, Solomon, Butscher, Guibas 2012
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Functional maps in spectral domain

f

g

≈ a1 + a2 · · ·+ ak

≈ b1 + b2 · · ·+ bk

φ0 φ1 φk

ψ0 ψ1 ψk

↓
T
↓

↓
C
↓

Ovsjanikov, Ben-Chen, Solomon, Butscher, Guibas 2012
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Functional maps in spectral domain

≈

Bk×q = (〈ψi, gj〉Y ) Ck×k Ak×q = (〈φi, fj〉X )

where A, B are Fourier coefficients of corresponding ‘probe’ functions

gi ≈ Tfi i = 1, . . . , q ≥ k

Ovsjanikov, Ben-Chen, Solomon, Butscher, Guibas 2012
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Laplacian eigenbasis

φ0 φ1 φ2 φ3

For shapes with simple spectrum, Laplacian eigenfunctions are invariant
(up to sign) to isometric deformations, ψi = ±Tφi

ψ0 ψ1 ψ2 ψ3
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Issues with functional maps

Finding correspondence boils down to solving a linear problem

Hard to automatically compute many probe functions fi, gi

Tradeoff between basis size k and number of probe functions q:
larger k yields better approximation, but requires more probe
functions to make the system determined

Regularization accounting for the structure of C (orthogonality,
diagonality, etc.)

Resulting map is not pointwise! Recovering a pointwise map
from functional map is a hard problem!

Is Laplacian eigenbasis the best way to represent functional
maps?
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Pointwise maps = product preserving maps

Theorem Functional map T : L2(X )→ L2(Y) is a pointwise map iff

T (f · h) = (Tf) · (Th)

for all f, h ∈ L2(X )

Problem: we do not work with T but its truncated spectral
representation C

Solution: represent T in product bases

Kishor, Manhas 1993

; Shtern, Kimmel 2013 (product-based pointwise descriptors)
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Functional maps
in product bases
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Product basis

f ≈
k∑
i=0

aiφi

+

r∑
j=1

ãj

rj∏
l=1

φijl ijl ∈ {1, . . . , k}

Adds higher frequency information

: for trigonometric bases 2nd
order products max double the frequency since

cos(nx) · cos(mx) = 1
2 [cos((n+m)x)) + cos((n−m)x))]

Product basis is linearly dependent

Orthogonality is lost

Higher orders r become unstable

Finding optimal approximation that minimizes the number of
products used is NP-hard

Nongeng, Melzi, Rodolà, Castellani, B, Ovsjanikov 2018
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ãj

rj∏
l=1

φijl ijl ∈ {1, . . . , k}

Adds higher frequency information: for trigonometric bases 2nd
order products max double the frequency since

cos(nx) · cos(mx) = 1
2 [cos((n+m)x)) + cos((n−m)x))]

Product basis is linearly dependent

Orthogonality is lost

Higher orders r become unstable

Finding optimal approximation that minimizes the number of
products used is NP-hard
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Example: 1D product basis

φ0 φ1 φ2 φ3 φ4

φ2
1 φ1 · φ2 φ1 · φ3 φ1 · φ4 φ2

2

φ2 · φ3 φ2 · φ4 φ2
3 φ3 · φ4 φ2

4
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1D function approximation: standard vs product basis

0 2π

0

1

k = 4

Approximation of a step function (black) using standard (blue)
and product (red) bases of order r = 2

Nongeng, Melzi, Rodolà, Castellani, B, Ovsjanikov 2018
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1D function approximation: standard vs product basis

0 2π

0

1

k = 8

Approximation of a step function (black) using standard (blue)
and product (red) bases of order r = 2

Nongeng, Melzi, Rodolà, Castellani, B, Ovsjanikov 2018
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1D function approximation: standard vs product basis

0 2π

0

1

k = 12

Approximation of a step function (black) using standard (blue)
and product (red) bases of order r = 2

Nongeng, Melzi, Rodolà, Castellani, B, Ovsjanikov 2018
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3D function approximation: standard vs product basis

Original

0.23 0.10 0.06 0.04

Standard basis

0.09 0.02 0.01 0.006
k = 9 k = 29 k = 49 k = 69

Product basis

Approximation of the shape 3D coordinates in standard and product bases

Nongeng, Melzi, Rodolà, Castellani, B, Ovsjanikov 2018
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3D function approximation: standard vs product basis

Standard basis 2nd order 3rd order 4th order

Reconstruction of the shape 3D coordinates using standard and product bases
of different order (k = 20)

Nongeng, Melzi, Rodolà, Castellani, B, Ovsjanikov 2018
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Functional maps in product bases

f

g

≈ a1 + a2 · · ·+ ak

≈ b1 + b2 · · ·+ bk

φ0 φ1 φk

ψ0 ψ1 ψk

↓
T
↓

↓
C
↓

Nongeng, Melzi, Rodolà, Castellani, B, Ovsjanikov 2018
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Functional maps in product bases

f

g

≈ a1 + a2 · · ·+ ak + ã12 · · ·+ ãkk

≈ b1 + b2 · · ·+ bk + b̃12 · · ·+ b̃kk

φ0 φ1 φk φ1·φ2 φ2k

ψ0 ψ1 ψk ψ1·ψ2 ψ2
k

↓
T
↓

↓
C̃
↓

Nongeng, Melzi, Rodolà, Castellani, B, Ovsjanikov 2018
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Functional maps in product bases

f ≈
k∑
i=0

aiφi +

k∑
i,j=1

ãijφi · φj

Nongeng, Melzi, Rodolà, Castellani, B, Ovsjanikov 2018
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Functional maps in product bases

Tf ≈ T

 k∑
i=0

aiφi +

k∑
i,j=1

ãijφi · φj



Nongeng, Melzi, Rodolà, Castellani, B, Ovsjanikov 2018
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Functional maps in product bases

Tf ≈
k∑
i=0

aiTφi +

k∑
i,j=1

ãijT (φi · φj)

Nongeng, Melzi, Rodolà, Castellani, B, Ovsjanikov 2018
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Functional maps in product bases

Tf ≈
k∑
i=0

aiTφi +

k∑
i,j=1

ãijT (φi) · T (φj)

Nongeng, Melzi, Rodolà, Castellani, B, Ovsjanikov 2018
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Functional maps in product bases

Tf ≈
k∑

i,j=0

aicijψj +

k∑
i,j=1

k∑
l,l′=0

ãij cilcil′

︸ ︷︷ ︸
c̃ijll′

ψl · ψl′

Nongeng, Melzi, Rodolà, Castellani, B, Ovsjanikov 2018
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Functional maps in product bases

Tf ≈
k∑
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aicijψj +
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Structure of matrix C̃

C

C̃

Nongeng, Melzi, Rodolà, Castellani, B, Ovsjanikov 2018
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Structure of matrix C̃

C̃(C) =

[
C φ00c

>
0 ⊗C01 + φ00

[
0

C11

]
⊗ c>0

C11 ⊗C11

]

is matrix of size (k2 + k+ 1)× (k2 + k+ 1) expressed in terms of C, and

C11 =

c11 . . . c1k
...

...
...

ck1 . . . ckk

 C01 =

c01 . . . c0k
...

...
...

ck1 . . . ckk

 c>0 = [c00 . . . c0k]

⇒ (k2 + k+ 1)2 coefficients, but only (k+ 1)2 degrees of freedom!

Nongeng, Melzi, Rodolà, Castellani, B, Ovsjanikov 2018
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Standard vs product bases

Source

0.76 0.41

0.76 0.32

Standard basis Product basis

Function approximation and transfer error using standard and product bases

Nongeng, Melzi, Rodolà, Castellani, B, Ovsjanikov 2018
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Example of correspondence on FAUST dataset

Source Standard basis Product basis

Correspondence (shown with matching colors) and correspondence error on
SCAPE shapes using standard and product bases

Nongeng, Melzi, Rodolà, Castellani, B, Ovsjanikov 2018; data: Bogo et al. 2014
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Correspondence quality

0 0.05 0.1

50

100

Geodesic error

%
C

or
re

sp
o

n
d

en
ce

s

Standard (89.98)

Product (92.93)

0 0.05 0.1

50

100

Geodesic error

Standard (87.23)

Product (91.49)

Quality of functional maps computed with standard and product bases on
FAUST (left) and TOSCA (right) shapes

Nongeng, Melzi, Rodolà, Castellani, B, Ovsjanikov 2018



24/36

Future directions

Instead of improving a given functional map, finding pointwise
functional maps by solving the non-linear problem

min
C∈Rk×k

‖B− C̃(C)A‖2F

More general definition of products (potentially combined with
learning)
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Issues with functional maps

Finding correspondence boils down to solving a linear problem

Hard to automatically compute many probe functions fi, gi

Tradeoff between basis size k and number of probe functions q:
larger k yields better approximation, but requires more probe
functions to make the system determined

Regularization accounting for the structure of C (orthogonality,
diagonality, etc.)

Resulting map is not pointwise! Recovering a pointwise map
from functional map is a hard problem!

Is Laplacian eigenbasis the best way to represent functional
maps?
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Functional maps
in product spaces
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Correspondence in the product space

Source Target Product manifold

Functional map Tµ : F(M)→ F(N ) associated with a density
µ ∈ L1(M×N ) on the product manifold (M×N , gM ⊕ gN )

Tµ(g)(x) =

∫
N
g(y)µ(x, y)dy

Rodolà, Lähner, BB, Solomon 2018
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Laplacian eigenbasis on product manifold

Theorem Let M×N be a product manifold and let

∆M×N ξ = γξ

Then, there exist φ, ψ and α, β s.t. ∆Mφ = αφ and ∆Nψ = βψ and

γ = α+ β ξ = φ ∧ ψ

φ0 ∧ ψ0 φ1 ∧ ψ0 φ0 ∧ ψ1 φ2 ∧ ψ0 φ3 ∧ ψ0

Berger, Gauduchon, Mazet 1971
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Representation equivalence

Theorem Let cij = 〈φi, Tµ(ψj)〉M be the representation of Tµ in or-
thogonal bases {φi}i≥1, {ψi}i≥1 and let pij = 〈φi ∧ ψj , µ〉M×N such
that µ =

∑
ij(φi ∧ ψj)pij . Then cij = pij for all i, j.

0 50 100 150 200
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Laplacian spectrum

C

1 10

1

10

Functional map coefficients

0

0.5

1

Rodolà, Lähner, BB, Solomon 2018



29/36

Representation equivalence

Theorem Let cij = 〈φi, Tµ(ψj)〉M be the representation of Tµ in or-
thogonal bases {φi}i≥1, {ψi}i≥1 and let pij = 〈φi ∧ ψj , µ〉M×N such
that µ =

∑
ij(φi ∧ ψj)pij . Then cij = pij for all i, j.

0 50 100 150 200
0

2

4

6

8

E
ig

en
va

lu
e

Laplacian spectrum

C

1 10

1

10

Functional map coefficients

0

0.5

1
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Representation efficiency

µ =

k∑
`=0

p`ξ`

φ0 ∧ ψ0 φ1 ∧ ψ0 φ0 ∧ ψ1 φ2 ∧ ψ0 φ3 ∧ ψ0

Separable basis

Rodolà, Lähner, BB, Solomon 2018

; Choukroun et al. 2017; Melzi, Rodolà, Castellani,
B 2017
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Representation efficiency

µ =

k∑
`=0

p`ξ`

ξ0 ξ2 ξ3 ξ4 ξ5

Non-separable localized basis

Eigenfunctions of the Hamiltonian operator H = ∆M×N + V , where V
is the localization potential

Rodolà, Lähner, BB, Solomon 2018; Choukroun et al. 2017; Melzi, Rodolà, Castellani,
B 2017
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Example: 1D correspondence

Source

Delta function transfer using functional map on the product space computed in
separable basis. Groundtruth correspondence shown in black.

Rodolà, Lähner, BB, Solomon 2018
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Example: 1D correspondence

Source

Delta function transfer using functional map on the product space computed in
localized basis (90% area). Groundtruth correspondence shown in black.

Rodolà, Lähner, BB, Solomon 2018



31/36

Example: 1D correspondence

Source

Delta function transfer using functional map on the product space computed in
localized basis (25% area). Groundtruth correspondence shown in black.

Rodolà, Lähner, BB, Solomon 2018
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Example: 1D correspondence

Source

Delta function transfer using functional map on the product space computed in
localized basis (5% area). Groundtruth correspondence shown in black.

Rodolà, Lähner, BB, Solomon 2018
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Example: 1D correspondence

Source

Delta function transfer using functional map on the product space computed in
localized basis (1% area). Groundtruth correspondence shown in black.

Rodolà, Lähner, BB, Solomon 2018
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Example: 1D correspondence
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Quality of correspondence on product manifold using different basis localization

Rodolà, Lähner, BB, Solomon 2018
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Example: 2D correspondence

Source Target

Delta function transfer using functional map on the product space computed in
separable basis.

Rodolà, Lähner, BB, Solomon 2018
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Example: 2D correspondence

Source Target

Delta function transfer using functional map on the product space computed in
localized basis (15% area).

Rodolà, Lähner, BB, Solomon 2018
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Example: 2D correspondence

Source Target

Delta function transfer using functional map on the product space computed in
localized basis (10% area).

Rodolà, Lähner, BB, Solomon 2018
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Example: 2D correspondence
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Quality of correspondence on product manifold using different basis localization

Rodolà, Lähner, BB, Solomon 2018
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Two completely different uses of
products yield novel and interesting
representations of functional maps
and shed new light on old problems
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Functional maps + products = ♥
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Thank you!
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