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0 Classical Statistics Two Sample Problem



Two Sample Tests

@ Question: Suppose X ~ pand Y ~ g on R?

Ho: p=q
Hi:  p#q

@ Statistical in nature
e Goal is to convince you this touches on

@ Spectral theory
@ Optimization
@ Data science in medicine



Two Sample Test Applications

@ Question: Suppose X ~ pand Y ~ g on R?

Flow Cytometry Diffusion MRI GANs




Two Sample Tests in 1D

@ Question: Suppose X ~ pand Y ~ gon R?

Ho:  p=q
Hi:  p#q
@ Answer:

e Easy in 1D: Kolmogorov-Smirnov
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e Hard in nD: Topic of this work



Two Sample Tests in nD

@ Why is it hard in higher dimensions:
e Marginals of distribution are insufficient

e Difficult to define relevant bins
e Curse of dimensionality: most bins will have very few points
@ Minimax rate exhibits curse (Arias-Castro et al 2017)




Two Sample Tests in nD

@ More general question: How do we define a distance between
Xand Y?

dX,Y)<e = p=q
dX,Y)>e = p#q

e Exist ways to choose e: permutation test

@ Additional Questions
o Not just interested in whether they deviate, but how and where?
e Can we extend to k—samples and use distance matrix between
pairwise samples?
e How without assumption of underlying manifold structure?



e Reframing as an Optimization Problem



Bins and Locality

@ No point-to-point correspondence, so use bins/histograms
e Bins too small, lead to high variance
@ Bins too large, lead to poor precision

@ More generally by maximum mean discrepancy with some set of

functions

MMD(p, g; F)

MMD(X, Y; F)

sup f(x)dp(x /f )dq(x

feF

SUp(|X|Z Zf )

feF er




Avoid Optimization with Kernels

@ Problem: Which function classes are tractable?
@ Possible Solution: Bins defined by a kernel k : RY x RY — [0, 1]

k(x,y) = g~ Ix=yI*/o? (Example)

@ Take F as unit ball in Reproducing Kernel Hilbert Space # (k)

feHif Flf] = (F.k(t,-) = £(t)

Data with local geometry Example Balls of Affinity > 0.1



Maximum Mean Discrepency

@ Want to define density at any z € R?

11p(2) = Explk(2, X)]
@ Then avoid optimization

MMD?(p, q; F) = [sup(Exf(X)—Eyf(y)ﬂ2

feF

2
= [SUp<Mp — Kq» f>]
feF
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Figure 1.1: Embedding of marginal distributions: Each distribution is mapped into
an RKHS via an expectation operation.
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Discrete MMD

@ Still hard to compute, but exists equivalent discrete version

1 1
MMD(X,Y) = ——— k(x,x _ !
X, 7) n(n—1)XXZ€X (X’X)+m(m—1)yy2éyk(y’y)
~2 S k)
xeX,yeY

@ Avg. Affinity within X, Avg. Affinity within Y
@ Avg. Affinity between X and Y

Data X and Y K(X, X)




Using MMD

Guarantees (Gretton, et al. 2011)
@ MMD(p, q) is one-to-one mapping for ||p — gl

o If p=g, MMD(X,Y) — 0 like -2

@ C depends on bandwidth of kernel
@ If p # q, MMD(X, Y) minimum distance detectable is

[+]

g — ppll = Jnrm




@ Kernel is isotropic
o Treats data on single scale
e Convergence depends on dimension of ambient space
(Wasserman et al 2014)
@ p # g results don't speak to power of test
@ O (n?) storage of K
o Completely intractable for k—sample problem and network
geometry



@ Kernel is isotropic
o Treats data on single scale
e Convergence depends on dimension of ambient space
(Wasserman et al 2014)
@ p # g results don't speak to power of test
@ O (n?) storage of K
o Completely intractable for k—sample problem and network
geometry
@ Introduction of local geometry creates data-adaptive test
e Penalizes moving in normal direction
e Discounts regions of high-volatility
e Allows assumptions of local low dimensionality and off manifold

deviation




Q Interplay with Analysis and Spectral Theory



Spectral Convergence

@ Easier to work with mean centered kernel k and spectrum

y) =Y 0iti(X)oi(y), kel2(XxX,pxp), 00

@ Eigenfunctions have a long history of determining shape
@ Principle Component Analysis
@ Spectral graph theory

@ Asnote, (D(k) — k) = Ap — —AF = Af
e Implies eigenvalues of k not sufficient to differentiate between
datasets
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Convergence of Eigenvectors

@ If p = g, goal to show

Z@ 0, |Y|Z¢,(y

XGX yey

@ If p # g, show convergence to non-zero constants
@ Must treat ¢; simultaneously b/c samples not independent
e Multi-dim central limit theorem and spectral decay
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Eigenvectors are “Redundant”

@ Approximate rank of K determined by number of balls needed to
cover data (Tygert, Rokhlin 2008; Kithn 2011)

o For acceptable bandwidth, |{i|oi(K) > e}| < n
@ Using square matrix is over-redundant

e Can choose small set of “reference points” with balls that easily
cover data
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Anisotropic Kernels

@ Assume ambient space has local geometry (r, X,)
e Sample r from XU Y

@ Random subsample
@ QR with pivoting
@ Quadrature methods

e X, from covariance of nearest neighbors
@ Choose set of “representative points” R to compare distributions
e Test only as good as reference points

A(r, x) = e0nTE 60

@ Still have mean embedding ux(r) = Exex[A(r, X)]

:
o : \
04 ‘4

02 04 06 08 1

Data/Ref Neighborhood Gauss Eig Mahal Eig




Adaptive Kernel MMD

o AMMD(X, Y:{r,%,}) = |lux(r) — pv(r)]|2

e Distance of distribution proj. to lighthouses

e Lighthouses contain directional and dimension information
@ Calculation is O (N|R|d)

@ Never calculating eigendecomposition




Theory for Anisotropic Kernels

Assumption: R sufficiently span column space of K

@ Parallel to kernel “having non-vanishing Fourier transforms on
any interval” for KDE

°g=p+rg

Informal Theorems (C., Cheng, Coifman 2017)

All shifts and variance depend on spectrum and how quickly
J ¥k(y)g(y)dy detect deviation
@ If 7= O(n"/?), then nT, is x?
Q If 7 = O(n~1/2+9), then n'~° T, is normal with shift “larger than
variance” as n — oo
Q If r =1, /nT, is normal with shift “larger than variance”




Power of the Test

@ Need to know if deviation is enough in comparison to Hy
e Either true Hy or permutation null

@ Important to know not just threshold but for fixed deviation
e Power is prob to detect deviation when it exists

Power (C., Cheng, Coifman 2017)

Notations as above, under Assumption, for specific g = g — p fixed, if
mh = O(n~"/3+%) where 0 < § < } (5 = } means that = 1), the test

power m(p + 7hg) — 1 @as n — oo.

Also extends for MMD results of Gretton et al



e Bounding Quadrature Error



Bounded Diffusion Subsampling

@ Choosing (r, Z,) currently done by random sampling of X U Y
e Effectively Monte Carlo integration

@ Reframe as problem of efficiently learning eigenfunction means
in CLT



Bounded Diffusion Subsampling

@ Choosing (r, Z,) currently done by random sampling of X U Y
e Effectively Monte Carlo integration

@ Reframe as problem of efficiently learning eigenfunction means
in CLT

Near Perfect Spherical Designs; (Steinerberger, Linderman, 2018)
For a, > 0and > ar = 1, then for any f expressible in terms of

low-freq eigenfunctions of graph G = (X, K),

[1£llx, t 2 1\
< _
=T [k 2 X
reR

Geometric interpretation: R distributed to diffuse sufficiently quickly
for small t.

|1R| S arf(r) - ExexIf(x)]

reR




Reference Point MMD

Reference points subsample
[ f(2)dz= [ |ux(z)— py(2)Pdz

zeXuy zeXuy

Non-Asymptotic MMD Reference Error; (C. 2018)

Assuming ux — py has energy = and projects mostly projects “mostly” (1 — ¢)
onto eigenfunctions A > v, for fixed reference set R,

2 N

2 2
‘AMMD(X, Y;a) — MMD(X, Y; K)‘ <5 <HKZ ard;
reR
er? (Z )\2>
A<y
Effectively dominated by finite error ﬁ

Currently working on fast preprocessing optimization scheme to
minimize over choice of R and a,



Complexity

@ For k—sample problem, only need comparison to fixed reference
set
@ Requires one loop through data for AMMD, and one loop over

tp(r)

k—sample test from O ((’2() N?. D) to O (</2<) IRl + K - NR|D)

IsotropicMMD RefSetAMMD



Using MMD

@ In practice, can use permutation test
@ Set Z = XU Y and define permutation p = [p1  p2] of
{1,..,n+m}
@ Compute MMD(Z,,, Z,)
@ Create histogram over N iterations of p for null hypothesis
Q If #{p: MMD(X,Y) > MMD(Z,,,Z,)}/N > 0.95, reject Ho
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e Data Science and Medical Applications



Comparison to Isotropic Gaussian

@ At the moment, mostly empirical comparison of spectrum and
deviation
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Adaptive Kernels Example

Figure: Estimated &,(r) and &q4(r) for two distributions p and g with 1000
samples each (left) with gaussian kernel (middle) and anisotropic kernel
(right) respectively.




Real Example

@ Flow cytometry: each patient is represented by 9D point cloud of cells

@ Used to tell if people have blood disease
e Medical test is to look at every 2D slice

Healthy

Unsupervised Organization:
@ Measure distance between every two people X; and X;
e Form network of people
@ Use eig. fctns. of distance matrix for unsupervised clustering



Distance Between Flow Cytometry Measurements
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Interpretability and Classification

Supervised Information:
@ Kernel MMD has dual form

MMD(p, q, F) = ?U;) [Exepf(X) — Eyeqf(y)|
c

@ Arg max f is called witness function
e Interprets regions of “importance” to differentiate p and q

@ Computable as

100 = [ ( [ atr0atry)patriar ) (ply) - atv)ay

2D Slice Witness 2D Slice Witness



Flow Cytometry from MDS

@ MDS is a more general class of blood cancers
@ Much more difficult to detect than AML
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General Take-Aways

@ Adaptive kernels are necessary tool for data science
@ Kernels allow extreme flexibility for defining point-to-point
correspondence
e Multi-scale affinity kernels
e Function model driven kernels
o Features generated from any transform

K(x,y) = e~ I?0—0WmI?/o?

@ Extensions:
e Multi-bandwidth generalization
e Local significance of deviation
o Generalization to non-iid samples (time series)
o GANs



Thank you!

Questions?



