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Two Sample Tests

Question: Suppose X ∼ p and Y ∼ q on Rd

H0 : p = q
H1 : p 6= q

Statistical in nature
Goal is to convince you this touches on

Spectral theory
Optimization
Data science in medicine



Two Sample Test Applications

Question: Suppose X ∼ p and Y ∼ q on Rd

H0 : p = q
H1 : p 6= q

Flow Cytometry Diffusion MRI GANs



Two Sample Tests in 1D

Question: Suppose X ∼ p and Y ∼ q on Rd

H0 : p = q
H1 : p 6= q

Answer:
Easy in 1D: Kolmogorov-Smirnov

Hard in nD: Topic of this work



Two Sample Tests in nD

Why is it hard in higher dimensions:
Marginals of distribution are insufficient

Difficult to define relevant bins
Curse of dimensionality: most bins will have very few points

Minimax rate exhibits curse (Arias-Castro et al 2017)



Two Sample Tests in nD

More general question: How do we define a distance between
X and Y?

d(X ,Y ) < ε =⇒ p = q
d(X ,Y ) > ε =⇒ p 6= q

Exist ways to choose ε: permutation test

Additional Questions
Not just interested in whether they deviate, but how and where?
Can we extend to k−samples and use distance matrix between
pairwise samples?
How without assumption of underlying manifold structure?
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Bins and Locality

No point-to-point correspondence, so use bins/histograms
Bins too small, lead to high variance
Bins too large, lead to poor precision

More generally by maximum mean discrepancy with some set of
functions

MMD(p,q;F) = sup
f∈F

(∫
f (x)dp(x)−

∫
f (x)dq(x)

)
M̂MD(X ,Y ;F) = sup

f∈F

( 1
|X |

∑
x∈X

f (x)− 1
|Y |

∑
y∈Y

f (y)
)



Avoid Optimization with Kernels

Problem: Which function classes are tractable?
Possible Solution: Bins defined by a kernel k : Rd ×Rd → [0,1]

k(x , y) = e−‖x−y‖2/σ2
(Example)

Take F as unit ball in Reproducing Kernel Hilbert Space H(k)

f ∈ H if Ft [f ] = 〈f , k(t , ·)〉 = f (t)

Data with local geometry Example Balls of Affinity > 0.1



Maximum Mean Discrepency

Want to define density at any z ∈ Rd

µp(z) = Ex∼p[k(z, x)]

Then avoid optimization

MMD2(p,q;F) =

[
sup
f∈F

(
Ex f (x)− Ey f (y)

)]2

=

[
sup
f∈F
〈µp − µq , f 〉

]2

= ‖µp − µq‖2
H

Skölkoph



Discrete MMD

Still hard to compute, but exists equivalent discrete version

MMD(X ,Y ) =
1

n(n − 1)

∑
x,x′∈X

k(x , x ′) +
1

m(m − 1)

∑
y,y′∈Y

k(y , y ′)

−
2

mn

∑
x∈X ,y∈Y

k(x , y)

Avg. Affinity within X , Avg. Affinity within Y

Avg. Affinity between X and Y

Data X and Y K (X ,X) K (X ,Y )



Using MMD

Guarantees (Gretton, et al. 2011)

MMD(p,q) is one-to-one mapping for ‖p − q‖∞
If p = q, MMD(X ,Y )→ 0 like C√

n+m

C depends on bandwidth of kernel

If p 6= q, MMD(X ,Y ) minimum distance detectable is
‖µq − µp‖ = c√

n+m



Problems
Kernel is isotropic

Treats data on single scale
Convergence depends on dimension of ambient space
(Wasserman et al 2014)

p 6= q results don’t speak to power of test
O
(
n2
)

storage of K
Completely intractable for k−sample problem and network
geometry

Introduction of local geometry creates data-adaptive test
Penalizes moving in normal direction
Discounts regions of high-volatility
Allows assumptions of local low dimensionality and off manifold
deviation
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Spectral Convergence

Easier to work with mean centered kernel k̃ and spectrum

k̃(x , y) =
∑

i

σiφi (x)φi (y), k̃ ∈ L2(X × X ,p × p), σi → 0

Eigenfunctions have a long history of determining shape
Principle Component Analysis
Spectral graph theory

As note, (D(k)− k)φ = λφ→ −∆f = λf
Implies eigenvalues of k̃ not sufficient to differentiate between
datasets



Convergence of Eigenvectors

If p = q, goal to show

1
|X |

∑
x∈X

φi (x)→ 0,
1
|Y |

∑
y∈Y

φi (y)→ 0

If p 6= q, show convergence to non-zero constants
Must treat φi simultaneously b/c samples not independent

Multi-dim central limit theorem and spectral decay

X and Y 1
|X|

∑
x∈X

φi (x) and 1
|Y |

∑
y∈Y

φi (y) φ8(x)



Eigenvectors are “Redundant”

Approximate rank of K determined by number of balls needed to
cover data (Tygert, Rokhlin 2008; Kühn 2011)

For acceptable bandwidth, |{i |σi (K ) > ε}| � n

Using square matrix is over-redundant
Can choose small set of “reference points” with balls that easily
cover data
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Anisotropic Kernels

Assume ambient space has local geometry (r ,Σr )
Sample r from X ∪ Y

Random subsample
QR with pivoting
Quadrature methods

Σr from covariance of nearest neighbors

Choose set of “representative points” R to compare distributions
Test only as good as reference points

A(r , x) = e(x−r)ᵀΣ−1
r (x−r)

Still have mean embedding µX (r) = Ex∈X [A(r , x)]

Data/Ref Neighborhood Gauss Eig Mahal Eig



Adaptive Kernel MMD

AMMD(X ,Y ; {r ,Σr}) = ‖µX (r)− µY (r)‖2

Distance of distribution proj. to lighthouses
Lighthouses contain directional and dimension information

Calculation is O (N|R|d)

Never calculating eigendecomposition



Theory for Anisotropic Kernels

Assumption: R sufficiently span column space of K
Parallel to kernel “having non-vanishing Fourier transforms on
any interval” for KDE
q = p + τg

Informal Theorems (C., Cheng, Coifman 2017)

All shifts and variance depend on spectrum and how quickly∫
ψk (y)g(y)dy detect deviation
1 If τ = O(n−1/2), then nTn is χ2

2 If τ = O(n−1/2+δ), then n1−δTn is normal with shift “larger than
variance” as n→∞

3 If τ = 1,
√

nTn is normal with shift “larger than variance”



Power of the Test

Need to know if deviation is enough in comparison to H0

Either true H0 or permutation null

Important to know not just threshold but for fixed deviation
Power is prob to detect deviation when it exists

Power (C., Cheng, Coifman 2017)

Notations as above, under Assumption, for specific g = q − p fixed, if
τn = O(n−1/2+δ) where 0 < δ ≤ 1

2 (δ = 1
2 means that τ = 1), the test

power πn(p + τng)→ 1 as n→∞.

Also extends for MMD results of Gretton et al
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Bounded Diffusion Subsampling

Choosing (r ,Σr ) currently done by random sampling of X ∪ Y
Effectively Monte Carlo integration

Reframe as problem of efficiently learning eigenfunction means
in CLT

Near Perfect Spherical Designs; (Steinerberger, Linderman, 2018)

For ar ≥ 0 and
∑

ar = 1, then for any f expressible in terms of
low-freq eigenfunctions of graph G = (X ,K ),∣∣∣∣ 1
|R|

∑
r∈R

ar f (r)− Ex∈X [f (x)]

∣∣∣∣ ≤ ‖f‖Xλ

λt

(∥∥∥K t
∑
r∈R

arδr

∥∥∥2

2
− 1
|X |

)1/2

Geometric interpretation: R distributed to diffuse sufficiently quickly
for small t .
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Reference Point MMD

Reference points subsample∫
z∈X∪Y

f (z)dz =
∫

z∈X∪Y
|µX (z)− µY (z)|2dz

Non-Asymptotic MMD Reference Error; (C. 2018)
Assuming µX − µY has energy τ and projects mostly projects “mostly” (1− ε)
onto eigenfunctions λ > ν, for fixed reference set R,

∣∣∣AMMD(X ,Y ; ar )−MMD(X ,Y ; K )
∣∣∣2 < τ 2

ν2

(∥∥∥K
∑
r∈R

arδr

∥∥∥
2
− 1

N

)
+

ε2τ 2

(∑
λ<ν

λ2

)

Effectively dominated by finite error c√
N

Currently working on fast preprocessing optimization scheme to
minimize over choice of R and ar



Complexity

For k−sample problem, only need comparison to fixed reference
set
Requires one loop through data for AMMD, and one loop over
µp(r)

k−sample test from O
((

K
2

)
N2 · D

)
to O

((
K
2

)
|R|+ K · N|R|D

)
IsotropicMMD RefSetAMMD



Using MMD

In practice, can use permutation test
1 Set Z = X ∪ Y and define permutation p =

[
p1 p2

]
of

{1, ..., n + m}
2 Compute MMD(Zp1 ,Zp2 )
3 Create histogram over N iterations of p for null hypothesis
4 If #{p : MMD(X ,Y ) > MMD(Zp1 ,Zp2 )}/N > 0.95, reject H0

Hirshorn, Daly Perm Test Histograms
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Comparison to Isotropic Gaussian

At the moment, mostly empirical comparison of spectrum and
deviation

Gauss Witness wL2 wspec



Adaptive Kernels Example

Figure: Estimated ξp(r) and ξq(r) for two distributions p and q with 1000
samples each (left) with gaussian kernel (middle) and anisotropic kernel
(right) respectively.



Real Example

Flow cytometry: each patient is represented by 9D point cloud of cells

Used to tell if people have blood disease
Medical test is to look at every 2D slice

Healthy AML

Unsupervised Organization:

Measure distance between every two people Xi and Xj

Form network of people
Use eig. fctns. of distance matrix for unsupervised clustering



Distance Between Flow Cytometry Measurements
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MMD ×10
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Interpretability and Classification
Supervised Information:

Kernel MMD has dual form

MMD(p,q,F) = sup
f∈F
|Ex∈pf (x)− Ey∈q f (y)|

Arg max f is called witness function
Interprets regions of “importance” to differentiate p and q

Computable as

f (x) =

∫ (∫
a(r , x)a(r , y)pR(r)dr

)
(p(y)− q(y))dy

2D Slice Witness 2D Slice Witness



Flow Cytometry from MDS

MDS is a more general class of blood cancers
Much more difficult to detect than AML

[
hi (r)

]159
i=1 Network pairwise distances

[
hi (r)

]159
i=1

Permutation Test Gaussian Kernel Permutation Test Anisotropic Kernel



General Take-Aways

Adaptive kernels are necessary tool for data science
Kernels allow extreme flexibility for defining point-to-point
correspondence

Multi-scale affinity kernels
Function model driven kernels
Features generated from any transform

k(x , y) = e−‖Φ(x)−Φ(y)‖2/σ2

Extensions:
Multi-bandwidth generalization
Local significance of deviation
Generalization to non-iid samples (time series)
GANs



Thank you!

Questions?


