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Motivation (1): Covariance localization

* Covariance localization is necessary in high-dimensional ensemble and
hybrid variational-ensemble data assimilation
- insufficient degrees of freedom from ensembles
- state-space and observation-space localization

* QObservation-space localization: increase observation error with
distance from a central grid-point
- Inconsistent for vertical localization when observations are
vertically-integrated
- Additional localization problem with observations impacting
several components of a strongly-coupled modeling system

* State-space localization: apply Hadamard product between ensemble
covariance and a pre-defined correlation matrix
- Straightforward to apply vertical localization and to account for
shared observations in a strongly-coupled systems
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Motivation (2): Bayesian inference

Data assimilation is a recursive application of Bayes formula over time

The power of DA comes from Bayesian inference. In DA practice
Bayesian inference typically reduces to first two moments of a PDF
(e.g., Gaussian PDF assumption)

VAR: Bayesian inference in terms of the first moment of a PDF. No
recursive estimation of forecast/analysis error covariance.

ENS: Bayesian inference in terms of the first and second moments of a
PDF (mean, covariance).

Hybrid ENS-VAR: Bayesian inference in terms of the first moment is
kept, but Bayesian inference in terms of the second moment is broken!
Typically two separate DA systems, VAR and ENS. VAR produces the
analysis, but the analysis error covariance estimate is from ENS and
therefore corresponds to the ENS analysis.

Therefore, hybrid ENS-VAR represents an improvement of VAR, but a
degradation of ENS method



How to improve hybrid ENS-VAR?

J Estimate error covariance in hybrid ENS-VAR consistently with the
analysis. This points to a need for a single system that does both the
first and second moment estimation.

* Several benefits of hybrid ENS-VAR are generally noticed:

(1) Increased degrees of freedom result from combining static and ensemble

error covariance
(2) Optimization/minimization is important for nonlinear processes and operators
(3) State-space covariance localization is advanageous for satellite observations.

* ENS has a formulation that allows Bayesian inference of the second
PDF moment, but needs to address the above points.

* Advantages (1) and (2) have been addressed in ENS, but (3) is still a
challenge.

J In this presentation we investigate a possibility for state-space
covariance localization in ENS framework.



State-space square-root covariance localization
used in current hybrid methods

Ensemble covariance is an outer product of ensemble perturbations

Use Hadamard product identity ...

Loab' =diag(a)- L-diag(h)

... to obtain localized error covariance

4

LoP, =Y diag(p,)-L-diag(p,)

The square root localized forecast error covariance is

D, =diag(p,)




New state-space localized covariance

Consider cost-function with localized forecast error covariance

1

JG) =5 (= x/Y (Lo Pp) (x = x) + 5[y = h()I"R ™ [y = h(x)]

Embed identity matrix using random sample N(0,1)




State-space square-root covariance localization
used in current hybrid methods

Ensemble covariance is an outer product of ensemble perturbations

p,=mx . +Lp: ). )—m(x._)

Localized error covariance is obtained as a Hadamard product with correlation L

LoP,=LoY ppl =3 (Loppl)
i=l =1

Use Hadamard product identity ...

Loab' =diag(a)-L-diag(h)

... to obtain localized error covariance
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New state-space localized covariance

Consider cost-function with localized forecast error covariance

1

J{x) = E{r = 2 Y LoiPp )M =xl )+ =ly=h() R =h{x)]

Embed identity matrix using random sample N(0,1)
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Experimental setup

Weather Research and Forecasting (WRF) model

27 km /31 layer

32 dynamical ensembles

(1) 1024 and (2) 4096 random ensembles

6-hour forecast error covariance

Random: use D=/ in localized covariance formulation
Total: use complete localized covariance formulation

Single observation experiment

: A i n Ax
x4 —x! = (Lo P:)Y2(Lo P,)T/2
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Random autocovariance (COV- )

1024 ensembles 4096 ensembles

RAMNLIC HOTiAod el fesipainse T o Tols

HANDOM: Vertical response T Tobs & Lat 44.0 HANDOM: Verlical responses T § Tabs § Lat 44.0

More random ensembles produce less noise



Results: random cross-covariance (COV,, )

4096 ensembles

MRANDOM: Vertical response T @& MUobs & Lat 44.0

Acceptable noise in cross-covariances
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Results: total autocovariance - COV
(4096 random x 32 dynamic)

1024 ensembles 4096 ensembles

an
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Random autocovariance (COV-.-)
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Experimental setup

 Weather Research and Forecasting (WRF) model

« 27 km /31 layer

* 32 dynamical ensembles

* (1) 1024 and (2) 4096 random ensembles

* 6-hour forecast error covariance

* Random: use D=l in localized covariance formulation

* Total: use complete localized covariance formulation

* Single observation experiment

Ax

x® —xf = (Lo Py)Y2(L o P)T/2 (0




Results: random cross-covariance (COV,, )

4096 ensembles

RANDOM: Vartical response T & MUobs & Lat 44.0

Acceptable noise in cross-covariances
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Results: total autocovariance - COV
(4096 random x 32 dynamic)

1024 ensembles 4096 ensembles

DYHAMIC: Vertical response T @ Tobs & Lal 44,0

|
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Results: total cross-covariance
(4096 random x 32 dynamic)

Tops — V response MU, ., = V response

DYNAMIC: Varical responss WV @ Tobs & Lat 44.0 DYMNAMIC: Vertical responss V o MUobs o Lar 44.0

H : |

Complex structure a consequence of dynamical covariance
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Practical considerations

* Hadamard product is expensive to calculate
- Localized random vectors are calculated off-line [fiSEAINGESWS
- Calculation depends on state vector specification

* Analysis space dimension is large (random x dynamic)
- Number of random ensembles does not depend on state
dimensions (identity random matrix only)
- need parallel programs to process ~ 0(10°) ensembles
- optional reduced Hessian preconditioning for even faster code

* Need only 32 + 1024 files to produce 32 x 1024 columns of covariance
- high efficiency
- possibility to introduce another orthogonal basis and substitute
random sample
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