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The Goodwin Oscillator

I The Goodwin Oscillator is a simple model for a gene
regulation, which is used widely for modeling circadian
rhythms.

I The ODEs governing the system are given by

ẋ =
a

kn + zn
− bx

ẏ = αx − βy
ż = γy − δz

where a, b, k , α, β, γ, δ > 0 and n ≥ 12.

I The system has a unique, globally stable periodic
trajectory across a wide range of parameter values.
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Transient Dynamics

I Are there phases on the limit cycle which are more
sensitive to perturbations?

I Furthermore, is there a stable invariant 2-manifold upon
which the limit cycle lies? If so, can it be easily
identified in order to reduce the dimension of our
system?

I In order to study the transient dynamics near the limit
cycle, we need to change our geometry.
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The Frenet Frame

I For each value of t ∈ [0,T ) we can construct a tangent,
normal, and binormal vector to Γ(t), which we denote
TΓ(t),N1Γ(t),N2Γ(t) respectively

I Together TΓ,N1Γ,N2Γ form the Frenet frame to Γ. We
will use this frame to simplify the dynamics.
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Local Orthogonal Rectification
I Suppose x0 is an initial condition near Γ, and we are

interested in the trajectory φ(t) such that φ(0) = x0.

I Suppose we can write

x0 = Γ(η0) + ξ1,0N1Γ(η0) + ξ2,0N2Γ(η0)

for η0 ∈ [0, t), ξ0 := (ξ1,0, ξ2,0) ∈ R2

I In other words, x0 lies in the normal plane to Γ at
t = η0.
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Local Orthogonal Rectification

I Can we continue to track φ(t) in this manner?



A New Frame for
Phase Space

Analysis

Benjamin Letson

Motivation

The Goodwin
Oscillator

Transient Dynamics

Local Orthogonal
Rectification

Sketch of Derivation

The LOR Dynamics

Angular Dynamics
near the Limit Cycle

Identifying the
Organizing
2-Manifolds

Conclusions and
Generalizations

Local Orthogonal Rectification

I Let
Ψ(η, ξ) = Γ(η) + ξ1N1Γ(η) + ξ2N2Γ(η)

I Can we find find functions η(t), ξ(t) such that

φ(t) = Ψ(η(t), ξ(t)) η(0) = η0, ξ(0) = ξ0

for t ∈ (−ε, ε)?

I Lemma
If x0 = Ψ(η0, ξ0) and ||ξ0|| is sufficiently small, then
there exist ε > 0 and smooth functions η(t), ξ(t) such
that

φ(t) = Ψ(η(t), ξ(t))

for t ∈ (−ε, ε).

I Taking time derivatives of the above, we can derive a
system of ODEs governing η(t), ξ(t).
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Local Orthogonal Rectification

I That is, we can compute

η̇ = L1(η, ξ)

ξ̇ = L2(η, ξ)

where L1, L2 have (fairly) simple, closed formulae.

I We call (η, ξ) the LOR coordinates with basecurve Γ

I Ψ maps the LOR coordinates (η, ξ) to our Cartesian
coordinates (x , y , z).

I Note that, Ψ(η, 0) = Γ(η), hence {ξ = 0} is mapped to
Γ under Ψ, or Ψ−1 rectifies Γ to the η-axis.

I Note also, that Ψ(η + T , ξ) = Ψ(η, ξ), as Γ is
T -periodic.
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LOR Dynamics

I The same trajectories in the LOR frame
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Angular Dynamics near the Limit Cycle

I In order to study the angular dynamics near Γ, we will
express

(ξ1, ξ2) = (r cos θ, r sin θ)

which represents the LOR frame in cylindrical
coordinates.

I We can compute ODEs

η̇ = 1 +O(r)

θ̇ = Θ(η, θ) +O(r)

ṙ = R(η, θ)r +O(r2)

I The Θ(η, θ) term describes how trajectories rotate
around Γ, and the R(η, θ) term measures radial
contraction/expansion near Γ.

I The invariant set r = 0 corresponds to the limit cycle.
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Angular Dynamics near the Limit Cycle

I On the set r = 0, we have dynamics

η̇ = 1

θ̇ = Θ(η, θ)

where Θ(η + T , θ) = Θ(η, θ) = Θ(η, θ + 2π).

I Intuitively, for r sufficiently small, the above dynamics
should be dominant, hence these are the angular
dynamics near the limit cycle.

I By studying this flow on S1 × S1 we can identify the
organizing features of our original flow.
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Periodic Angular Solutions
I We find there are four organizing angular trajectories

η

θ

I The two (with one 2π shifted copy) solid black curves
are stable, T -periodic angular trajectories.

I The two dashed black curves are unstable, T -periodic
angular trajectories.

I Note that, near η = 2/3T the stable and unstable
periodic solutions lie near one another, hence the system
is extremely sensitive to small angular perturbations.
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Periodic Angular Solutions
I We find there are four organizing angular trajectories

η

θ

I The two (with one 2π shifted copy) solid black curves
are stable, T -periodic angular trajectories.

I The two dashed black curves are unstable, T -periodic
angular trajectories.

I Note that, near η = 2/3T the stable and unstable
periodic solutions lie near one another, hence the system
is extremely sensitive to small angular perturbations.
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Angular Manifolds

I Recall that these dynamics lie in the r = 0 invariant
plane
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Angular Manifolds
I Using standard invariant manifold theory, there is an

invariant 2-manifold attendant to each periodic angular
trajectory

I We call these the angular invariant manifolds
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Angular Manifolds

I The blue manifolds, attendant to the stable periodic
solutions, are both angularly and radially stable

I The red manifolds, attendant to the unstable periodic
solutions, are radially stable and angularly unstable
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Angular Manifolds
I Transforming back to our LOR coordinates, the angular

manifolds remain invariant
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Angular Manifolds
I Finally, transforming back to Cartesian coordinates, we

find that we have identified the desired manifold
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Angular Manifolds

I As a bonus, we have identified a second 2-manifold
which is unstable. This surface is a separatrix, which
displays high sensitivity to initial conditions.
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Conclusions and Generalizations

I By changing our coordinate system, we have identified
the organizing phase features of the Goodwin oscillator.

I Indeed, the same analysis can be done for any periodic
trajectory in Rn.

I The key step in this analysis is Local Orthogonal
Rectification, which allows us to flatten out complicated
curvilinear geometries.
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