A New Frame for Phase Space Analysis

Benjamin Letson
A New Frame for Phase Space Analysis: Using Differential Geometry to Reveal Local Dynamics

Benjamin Letson
University of Pittsburgh
bg/14@pitt.edu

July 9, 2018

Motivation
The Goodwin
Oscillator
Transient Dynamics
Local Orthogonal Rectification
Sketch of Derivation
The LOR Dynamics
Angular Dynamics near the Limit Cycle
Identifying the
Organizing
2-Manifolds

Overview

Benjamin Letson

Angular Dynamics near the Limit Cycle Identifying the Organizing 2-Manifolds

Conclusions and Generalizations

The Goodwin Oscillator

A New Frame for Phase Space Analysis

Benjamin Letson

- The Goodwin Oscillator is a simple model for a gene regulation, which is used widely for modeling circadian rhythms.

The Goodwin
Oscillator
Transient Dynamics
Local Orthogonal
Rectification
Sketch of Derivation
The LOR Dynamics
Angular Dynamics
near the Limit Cycle
Identifying the
Organizing
2-Manifolds

The Goodwin Oscillator

Benjamin Letson

The Goodwin Oscillator
Transient Dynamics
where $a, b, k, \alpha, \beta, \gamma, \delta>0$ and $n \geq 12$.

The Goodwin Oscillator

A New Frame for
where $a, b, k, \alpha, \beta, \gamma, \delta>0$ and $n \geq 12$.

- The system has a unique, globally stable periodic trajectory across a wide range of parameter values.

Dynamics near the Limit Cycle

A New Frame for Phase Space Analysis

Benjamin Letson

Motivation

The Goodwin Oscillator
Transient Dynamics
Local Orthogonal Rectification
Sketch of Derivation The LOR Dynamics Angular Dynamics near the Limit Cycle
Identifying the
Organizing
2-Manifolds
Conclusions and Generalizations

Dynamics near the Limit Cycle

A New Frame for Phase Space Analysis

Benjamin Letson

Dynamics near the Limit Cycle

A New Frame for Phase Space Analysis

Benjamin Letson
x

Motivation

The Goodwin Oscillator
Transient Dynamics
Local Orthogonal Rectification
Sketch of Derivation The LOR Dynamics Angular Dynamics near the Limit Cycle
Identifying the
Organizing
2-Manifolds

Transient Dynamics

A New Frame for Phase Space Analysis

Benjamin Letson

Motivation

The Goodwin
Oscillator
Transient Dynamics
Local Orthogonal Rectification
Sketch of Derivation The LOR Dynamics Angular Dynamics near the Limit Cycle
Identifying the
Organizing
2-Manifolds

Transient Dynamics

- Are there phases on the limit cycle which are more sensitive to perturbations?
- Furthermore, is there a stable invariant 2-manifold upon which the limit cycle lies? If so, can it be easily identified in order to reduce the dimension of our system?

Transient Dynamics

A New Frame for

- Are there phases on the limit cycle which are more sensitive to perturbations?
- Furthermore, is there a stable invariant 2-manifold upon which the limit cycle lies? If so, can it be easily identified in order to reduce the dimension of our system?
- In order to study the transient dynamics near the limit cycle, we need to change our geometry.

The Frenet Frame

- For each value of $t \in[0, T)$ we can construct a tangent, normal, and binormal vector to $\Gamma(t)$, which we denote $T \Gamma(t), N_{1} \Gamma(t), N_{2} \Gamma(t)$ respectively

A New Frame for Phase Space Analysis

Benjamin Letson

The Frenet Frame

- For each value of $t \in[0, T)$ we can construct a tangent, normal, and binormal vector to $\Gamma(t)$, which we denote $T \Gamma(t), N_{1} \Gamma(t), N_{2} \Gamma(t)$ respectively

A New Frame for Phase Space Analysis

Benjamin Letson

- Together $T \Gamma, N_{1} \Gamma, N_{2} \Gamma$ form the Frenet frame to Γ. We will use this frame to simplify the dynamics.

Local Orthogonal Rectification

- Suppose x_{0} is an initial condition near Γ, and we are interested in the trajectory $\phi(t)$ such that $\phi(0)=x_{0}$.

A New Frame for Phase Space Analysis

Benjamin Letson

Motivation

The Goodwin
Oscilator
Transient Dynamics
Local Orthogonal
Rectification
Sketch of Derivation
The LOR Dynamics
Angular Dynamics
near the Limit Cycle
Identifying the
Organizing
2-Manifolds

Local Orthogonal Rectification

- Suppose x_{0} is an initial condition near Γ, and we are interested in the trajectory $\phi(t)$ such that $\phi(0)=x_{0}$.
- Suppose we can write

$$
x_{0}=\Gamma\left(\eta_{0}\right)+\xi_{1,0} N_{1} \Gamma\left(\eta_{0}\right)+\xi_{2,0} N_{2} \Gamma\left(\eta_{0}\right)
$$

for $\eta_{0} \in[0, t), \xi_{0}:=\left(\xi_{1,0}, \xi_{2,0}\right) \in \mathbb{R}^{2}$

A New Frame for Phase Space Analysis

Benjamin Letson

Local Orthogonal Rectification

- Suppose x_{0} is an initial condition near Γ, and we are interested in the trajectory $\phi(t)$ such that $\phi(0)=x_{0}$.
- Suppose we can write

$$
\begin{aligned}
& \quad x_{0}=\Gamma\left(\eta_{0}\right)+\xi_{1,0} N_{1} \Gamma\left(\eta_{0}\right)+\xi_{2,0} N_{2} \Gamma\left(\eta_{0}\right) \\
& \text { for } \eta_{0} \in[0, t), \xi_{0}:=\left(\xi_{1,0}, \xi_{2,0}\right) \in \mathbb{R}^{2}
\end{aligned}
$$

- In other words, x_{0} lies in the normal plane to Γ at $t=\eta_{0}$.

Local Orthogonal Rectification

Benjamin Letson

Motivation

The Goodwin
Oscillator
Transient Dynamics
Local Orthogonal Rectification
Sketch of Derivation
The LOR Dynamics
Angular Dynamics
near the Limit Cycle
Identifying the
Organizing
2-Manifolds

Local Orthogonal Rectification

A New Frame for Phase Space Analysis

Benjamin Letson

$$
\Psi(\eta, \xi)=\Gamma(\eta)+\xi_{1} N_{1} \Gamma(\eta)+\xi_{2} N_{2} \Gamma(\eta)
$$

Motivation

The Goodwin
Oscillator
Transient Dynamics
Local Orthogonal Rectification
Sketch of Derivation
The LOR Dynamics
Angular Dynamics
near the Limit Cycle
Identifying the
Organizing
2-Manifolds
Conclusions and
Generalizations

Local Orthogonal Rectification

- Let

$$
\Psi(\eta, \xi)=\Gamma(\eta)+\xi_{1} N_{1} \Gamma(\eta)+\xi_{2} N_{2} \Gamma(\eta)
$$

- Can we find find functions $\eta(t), \xi(t)$ such that

$$
\phi(t)=\Psi(\eta(t), \xi(t)) \quad \eta(0)=\eta_{0}, \xi(0)=\xi_{0}
$$

for $t \in(-\epsilon, \epsilon)$?

A New Frame for Phase Space Analysis

Benjamin Letson

Motivation

The Goodwin
Oscillator
Transient Dynamics
Local Orthogonal

Sketch of Derivation
The LOR Dynamics
Angular Dynamics near the Limit Cycle
Identifying the
Organizing
2-Manifolds

Local Orthogonal Rectification

- Let

$$
\Psi(\eta, \xi)=\Gamma(\eta)+\xi_{1} N_{1} \Gamma(\eta)+\xi_{2} N_{2} \Gamma(\eta)
$$

- Can we find find functions $\eta(t), \xi(t)$ such that

$$
\phi(t)=\Psi(\eta(t), \xi(t)) \quad \eta(0)=\eta_{0}, \xi(0)=\xi_{0}
$$

for $t \in(-\epsilon, \epsilon)$?

- Lemma

If $x_{0}=\Psi\left(\eta_{0}, \xi_{0}\right)$ and $\left\|\xi_{0}\right\|$ is sufficiently small, then there exist $\epsilon>0$ and smooth functions $\eta(t), \xi(t)$ such that

$$
\phi(t)=\Psi(\eta(t), \xi(t))
$$

for $t \in(-\epsilon, \epsilon)$.

A New Frame for Phase Space Analysis

Local Orthogonal Rectification

- Let

$$
\Psi(\eta, \xi)=\Gamma(\eta)+\xi_{1} N_{1} \Gamma(\eta)+\xi_{2} N_{2} \Gamma(\eta)
$$

- Can we find find functions $\eta(t), \xi(t)$ such that

$$
\phi(t)=\Psi(\eta(t), \xi(t)) \quad \eta(0)=\eta_{0}, \xi(0)=\xi_{0}
$$

for $t \in(-\epsilon, \epsilon)$?

- Lemma

If $x_{0}=\Psi\left(\eta_{0}, \xi_{0}\right)$ and $\left\|\xi_{0}\right\|$ is sufficiently small, then there exist $\epsilon>0$ and smooth functions $\eta(t), \xi(t)$ such that

$$
\phi(t)=\Psi(\eta(t), \xi(t))
$$

for $t \in(-\epsilon, \epsilon)$.

- Taking time derivatives of the above, we can derive a system of ODEs governing $\eta(t), \xi(t)$.

Local Orthogonal Rectification

Benjamin Letson

- That is, we can compute

$$
\begin{aligned}
\dot{\eta} & =L_{1}(\eta, \xi) \\
\dot{\xi} & =L_{2}(\eta, \xi)
\end{aligned}
$$

where L_{1}, L_{2} have (fairly) simple, closed formulae.

Motivation

The Goodwin
Oscillator
Transient Dynamics
Local Orthogonal Rectification
Sketch of Derivation
The LOR Dynamics Angular Dynamics near the Limit Cycle Ifentifying the
Organizing
2-Manifolds

Local Orthogonal Rectification

Benjamin Letson

- That is, we can compute

$$
\begin{aligned}
\dot{\eta} & =L_{1}(\eta, \xi) \\
\dot{\xi} & =L_{2}(\eta, \xi)
\end{aligned}
$$

where L_{1}, L_{2} have (fairly) simple, closed formulae.

- We call (η, ξ) the LOR coordinates with basecurve Γ

Local Orthogonal Rectification

Benjamin Letson

- That is, we can compute

$$
\begin{aligned}
\dot{\eta} & =L_{1}(\eta, \xi) \\
\dot{\xi} & =L_{2}(\eta, \xi)
\end{aligned}
$$

where L_{1}, L_{2} have (fairly) simple, closed formulae.

- We call (η, ξ) the LOR coordinates with basecurve「
- ψ maps the LOR coordinates (η, ξ) to our Cartesian coordinates (x, y, z).

Local Orthogonal Rectification

Benjamin Letson

- That is, we can compute

$$
\begin{aligned}
\dot{\eta} & =L_{1}(\eta, \xi) \\
\dot{\xi} & =L_{2}(\eta, \xi)
\end{aligned}
$$

where L_{1}, L_{2} have (fairly) simple, closed formulae.

- We call (η, ξ) the LOR coordinates with basecurve「
- Ψ maps the LOR coordinates (η, ξ) to our Cartesian coordinates (x, y, z).
- Note that, $\Psi(\eta, 0)=\Gamma(\eta)$, hence $\{\xi=0\}$ is mapped to Γ under Ψ, or Ψ^{-1} rectifies Γ to the η-axis.

Local Orthogonal Rectification

- That is, we can compute

$$
\begin{aligned}
\dot{\eta} & =L_{1}(\eta, \xi) \\
\dot{\xi} & =L_{2}(\eta, \xi)
\end{aligned}
$$

where L_{1}, L_{2} have (fairly) simple, closed formulae.

- We call (η, ξ) the LOR coordinates with basecurve 「
- ψ maps the LOR coordinates (η, ξ) to our Cartesian coordinates (x, y, z).
- Note that, $\Psi(\eta, 0)=\Gamma(\eta)$, hence $\{\xi=0\}$ is mapped to Γ under Ψ, or Ψ^{-1} rectifies Γ to the η-axis.
- Note also, that $\Psi(\eta+T, \xi)=\Psi(\eta, \xi)$, as Γ is T-periodic.

LOR Dynamics

A New Frame for Phase Space Analysis

Benjamin Letson

Motivation

The Goodwin
Oscillator
Transient Dynamics
Local Orthogonal Rectification
Sketch of Derivation The LOR Dynamics Angular Dynamics near the Limit Cycle
Identifying the
Organizing
2-Manifolds
Conclusions and
Generalizations

Angular Dynamics near the Limit Cycle

- In order to study the angular dynamics near Γ, we will express

$$
\left(\xi_{1}, \xi_{2}\right)=(r \cos \theta, r \sin \theta)
$$

which represents the LOR frame in cylindrical coordinates.

A New Frame for Phase Space Analysis

Benjamin Letson

```
Motivation
```

The Goodwin
Oscillator
Transient Dynamics

Angular Dynamics near the Limit Cycle

- In order to study the angular dynamics near Γ, we will express

$$
\left(\xi_{1}, \xi_{2}\right)=(r \cos \theta, r \sin \theta)
$$

which represents the LOR frame in cylindrical coordinates.

- We can compute ODEs

$$
\begin{aligned}
\dot{\eta} & =1+\mathcal{O}(r) \\
\dot{\theta} & =\Theta(\eta, \theta)+\mathcal{O}(r) \\
\dot{r} & =R(\eta, \theta) r+\mathcal{O}\left(r^{2}\right)
\end{aligned}
$$

A New Frame for Phase Space Analysis

Benjamin Letson

Angular Dynamics near the Limit Cycle

- In order to study the angular dynamics near Г, we will express

$$
\left(\xi_{1}, \xi_{2}\right)=(r \cos \theta, r \sin \theta)
$$

which represents the LOR frame in cylindrical coordinates.

- We can compute ODEs

$$
\begin{aligned}
\dot{\eta} & =1+\mathcal{O}(r) \\
\dot{\theta} & =\Theta(\eta, \theta)+\mathcal{O}(r) \\
\dot{r} & =R(\eta, \theta) r+\mathcal{O}\left(r^{2}\right)
\end{aligned}
$$

- The $\Theta(\eta, \theta)$ term describes how trajectories rotate around Γ, and the $R(\eta, \theta)$ term measures radial contraction/expansion near Γ.

A New Frame for

Angular Dynamics near the Limit Cycle

- In order to study the angular dynamics near Г, we will express

$$
\left(\xi_{1}, \xi_{2}\right)=(r \cos \theta, r \sin \theta)
$$

which represents the LOR frame in cylindrical coordinates.

- We can compute ODEs

$$
\begin{aligned}
\dot{\eta} & =1+\mathcal{O}(r) \\
\dot{\theta} & =\Theta(\eta, \theta)+\mathcal{O}(r) \\
\dot{r} & =R(\eta, \theta) r+\mathcal{O}\left(r^{2}\right)
\end{aligned}
$$

- The $\Theta(\eta, \theta)$ term describes how trajectories rotate around Γ, and the $R(\eta, \theta)$ term measures radial contraction/expansion near Γ.
- The invariant set $r=0$ corresponds to the limit cycle.

Angular Dynamics near the Limit Cycle

Benjamin Letson

Motivation

The Goodwin
Oscillator
Transient Dynamics

$$
\begin{aligned}
& \dot{\eta}=1 \\
& \dot{\theta}=\Theta(\eta, \theta)
\end{aligned}
$$

where $\Theta(\eta+T, \theta)=\Theta(\eta, \theta)=\Theta(\eta, \theta+2 \pi)$.

Local Orthogonal
Rectification
Sketch of Derivation
The LOR Dynamics
Angular Dynamics near the Limit Cycle Identifying the Organizing
2-Manifolds

Angular Dynamics near the Limit Cycle

- On the set $r=0$, we have dynamics

$$
\begin{aligned}
& \dot{\eta}=1 \\
& \dot{\theta}=\Theta(\eta, \theta)
\end{aligned}
$$

where $\Theta(\eta+T, \theta)=\Theta(\eta, \theta)=\Theta(\eta, \theta+2 \pi)$.

- Intuitively, for r sufficiently small, the above dynamics should be dominant, hence these are the angular dynamics near the limit cycle.

Angular Dynamics near the Limit Cycle

- On the set $r=0$, we have dynamics

$$
\begin{aligned}
& \dot{\eta}=1 \\
& \dot{\theta}=\Theta(\eta, \theta)
\end{aligned}
$$

where $\Theta(\eta+T, \theta)=\Theta(\eta, \theta)=\Theta(\eta, \theta+2 \pi)$.

- Intuitively, for r sufficiently small, the above dynamics should be dominant, hence these are the angular dynamics near the limit cycle.
- By studying this flow on $S^{1} \times S^{1}$ we can identify the organizing features of our original flow.

Periodic Angular Solutions

- We find there are four organizing angular trajectories
θ

A New Frame for Phase Space Analysis

Benjamin Letson

Motivation

The Goodwin
Oscillator
Transient Dynamics
Local Orthogonal Rectification
Sketch of Derivation
The LOR Dynamics
Angular Dynamics near the Limit Cycle
Identifying the
Organizing
2-Manifolds

Periodic Angular Solutions

- We find there are four organizing angular trajectories

A New Frame for Phase Space Analysis

Benjamin Letson

The Goodwin
Oscillator
Transient Dymamics
Local Orthogonal

Sketch of Derivation The LOR Dynamics Angular Dynamics near the Limit Cycle Identifying the

Organizing

- The two (with one 2π shifted copy) solid black curves are stable, T-periodic angular trajectories.

Periodic Angular Solutions

- We find there are four organizing angular trajectories
θ

A New Frame for

- The two (with one 2π shifted copy) solid black curves are stable, T-periodic angular trajectories.
- The two dashed black curves are unstable, T-periodic angular trajectories.

Periodic Angular Solutions

- We find there are four organizing angular trajectories

- The two (with one 2π shifted copy) solid black curves are stable, T-periodic angular trajectories.
- The two dashed black curves are unstable, T-periodic angular trajectories.
- Note that, near $\eta=2 / 3 T$ the stable and unstable periodic solutions lie near one another, hence the system is extremely sensitive to small angular perturbations.

Angular Manifolds

- Recall that these dynamics lie in the $r=0$ invariant plane

A New Frame for Phase Space Analysis

Benjamin Letson

Motivation

The Goodwin
Oscillator
Transient Dynamics
Local Orthorgonal Rectification
Sketch of Derivation The LOR Dynamics Angular Dynamics near the Limit Cycle Identifying the
Organizing
2-Manifolds

Angular Manifolds

- Using standard invariant manifold theory, there is an invariant 2-manifold attendant to each periodic angular trajectory

A New Frame for Phase Space Analysis

Benjamin Letson

```
Motivation
```

The Goodwin
Oscillator
Transient Dynamics
Local Orthogonal
Rectification
Sketch of Derivation
The LOR Dynamics
Angular Dynamics near the Limit Cycle
Identifying the
Organizing
2-Manifolds

Angular Manifolds

- Using standard invariant manifold theory, there is an invariant 2-manifold attendant to each periodic angular trajectory
- We call these the angular invariant manifolds

A New Frame for Phase Space Analysis

Benjamin Letson

Angular Manifolds

- The blue manifolds, attendant to the stable periodic solutions, are both angularly and radially stable

A New Frame for Phase Space Analysis

Benjamin Letson

Motivation

The Goodwin
Oscillator
Transient Dynamics
Local Orthogonal Rectification
Sketch of Derivation
The LOR Dynamics Angular Dynamics near the Limit Cycle Identifying the
Organizing
2-Manifolds

Angular Manifolds

- The blue manifolds, attendant to the stable periodic solutions, are both angularly and radially stable

A New Frame for

- The red manifolds, attendant to the unstable periodic solutions, are radially stable and angularly unstable

Angular Manifolds

- Transforming back to our LOR coordinates, the angular manifolds remain invariant

A New Frame for Phase Space Analysis

Benjamin Letson

Angular Manifolds

- Finally, transforming back to Cartesian coordinates, we find that we have identified the desired manifold

A New Frame for Phase Space Analysis

Benjamin Letson

Angular Manifolds

- As a bonus, we have identified a second 2-manifold which is unstable. This surface is a separatrix, which displays high sensitivity to initial conditions.

A New Frame for Phase Space Analysis

Benjamin Letson

Conclusions and Generalizations

Benjamin Letson

Motivation

The Goodwin
Oscillator
Transient Dynamics

- By changing our coordinate system, we have identified the organizing phase features of the Goodwin oscillator.

Local Orthogonal Rectification
Sketch of Derivation
The LOR Dynamics
Angular Dynamics
near the Limit Cycle
Identifying the
Organizing
2-Manifolds
Conclusions and
Generalizations

Conclusions and Generalizations

Benjamin Letson

- By changing our coordinate system, we have identified the organizing phase features of the Goodwin oscillator.
- Indeed, the same analysis can be done for any periodic trajectory in \mathbb{R}^{n}.

Conclusions and Generalizations

A New Frame for

- By changing our coordinate system, we have identified the organizing phase features of the Goodwin oscillator.
- Indeed, the same analysis can be done for any periodic trajectory in \mathbb{R}^{n}.
- The key step in this analysis is Local Orthogonal Rectification, which allows us to flatten out complicated curvilinear geometries.

Acknowledgements

Benjamin Letson

Motivation

The Goodwin
Oscillator
Transient Dynamics

- Thanks to Jonathan Rubin for his guidance and support
- This work was partially funded by the Andrew Mellon Foundation.

