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Computational Experiments

e Input: Poisson spike train S with a particular mean firing rate
A.

e Sequence of interspike intervals(ISls),
IS : {r]. = Tlu tz = rlza.'!'-3 — tﬂ! s !tn S tn-l}-

e T; is the beginning of the record trial.

o Is ={ISh,ISh,--- ,ISl,_1}, where ISIs are independent and
identically distributed random variables.

e /S/ has exponential distribution, with parameter A as mean
firing rate.
fx—151(x; \) = e~ ™

e Qutput: Normalized Postsynaptic Response distribution.

How does the response vary with frequency and
synapse type?
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2-D Map

e Given Interspike interval T, 2-D map (in C and R, ):
Cit1 =G~ "1™ LA

C4
e 1+K4

Pn-i—l — Pmax

Che T/ 4 K, - oy
Rn+1:1—(1—(1—Pn)Rn) Kr—]-Cn e

The peak value of IPSC upon the n-th stimulus is R, P,
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Some general problems in Neuroscience

¢ How much information is transmitted between neurons?

¢ |nformation theoretic measures determine the amount of
information the neuron could transmit, given the distribution

of observed spikes.

e T[hese measures ignore the order in which the responses occur.

e How to quantify “Memory” in the synapse?

¢ Multivariate Information measure estimates the amount of
information contained in a response about the sequential
number of preceding spike.

e Computed using Kraskov-Stogbauer-Grassberger (KSG)
algorithm (Kraskov et al., 2004).

e We use Computational Mechanics to quantify the structure
of response with an optimally predictive hidden Markov model

or Causal State Model (CSM).
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Causal States
Chain: H §t§;
Past: <S_— ++S¢25¢-15¢
Future : St—St+1Sr+2

Stationary : P( % (S).

{—

Two histories 's £ and 5 , are equivalent when

4:_
P(SLISL = 5Ly = p(SLSL = &L

e : function which maps histories to their equivalence classes:

(5L = ('L P(SL St =5ty = p(SLTL = ¥ty

The possible values of € are " Causal States” of the process.

O = E(SL)
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Properties of Causal States
(proof in (Shalizi & Crutchfield, 2001))

e Causal states are minimal sufficient statistics for predicting
the process's future.

e Given an initial Causal State and the next symbol from
original process, we can define the transition probability

s 1
79 = p(S =5,5 =0|S = o))

e Each causal state has a unique morph, i.e., no two causal
states have the same conditional distribution of futures.




Thresholding base on Statistical Complexity

Input: Poisson Spike train at a certain mean firing rate.

Output: Continuous response values ranges between [0, 1].

CSM takes values from a discrete alphabet.

Partition the output into 0's and 1" based on the
Statistical Complexity Measure.

Statistical Complexity: average amount of historical
information (memory) needed to reproduce the patterns
contained in the data set (sequence).

Statistical Complexity is defined as
Ci=— Z P(o;) log, P(o}).

where P(o;) is the probability of finding a system in the causal
state / after the machine has been running infinitely long.
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Statistical Complexity for synapse types
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The CSMs reconstructed for depressing synapse
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The CSMs reconstructed for mixed synapse
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The CSMs reconstructed for facilitating synapse

G3 02 04 b 83 063
FwmnaEmn B emnnes jf Hrrrasmen Fesqunmsa

CRF]
0100
nors
050

o0gs

- . S 0,000 {
0z T 04 . Ful 0
it vt gl MR i inan d

0 l.' I_| _'| fa
FHermabooyd Meseameg




The CSMs reconstructed for depressing synapse

e

|

(0 2 i 0538
ey

b Y

i
i
|

(R EFE Ilr i3z
i

.ll [
/
#

.-\.'% - 0
1009 (19 Jojo.1 A
"'\-\.:-' . I'._:_‘;" |“ Hara

0.50 0.76 =

0.25
Mormalired Response

0.26 0.50
Mormalized Responss

-ﬁ

(8) s

CE
wif,

\
b
|
il fdds o s63

Reawma Freg
=
£

=
LA
L

mu.gq( 315) 1/0.06
0.7/5 -

0.26 0.60
Normalired Response

=
=
=

0.26 050
Mormalized Response




The CSMs reconstructed for mixed synapse
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Discussion

e The machines differ largely between the three types of
short-term plasticity, e.g., the dynamics of the depressing type
IS simple whereas the facilitating type is complicated. [ hese
findings are not immediately obvious by looking at the
response distributions.

* We can understand this difference by looking at the spectrum
of fixed point.
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Fixed Point
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