Supervised Learning for High Frequency Trade Execution

Matthew Dixon

Department of Applied Math Illinois Institute of Technology

July 11th, 2018

Background on Price Impact Models¹

- The limit order book is an important source of information for predicting near-term price movements [Parlour, 1998], [Bloomfield, 2005], [Anderson, 2008], [Cao, 2009], [Kearns 2013], [Cont, 2014]
- Regression and machine learning models have been developed to capture linear order flow and price impact relationships [Cont, 2014], [Kearns, 2013], [Kercheval, 2015] and [Sirignano, 2016].
- In practice, the information content of the limit order book does not directly translate to greater economic profits through different high frequency market taking rules [Kozhan, 2012] and [Kearns, 2013]
- How effective are non-linear price impact models for avoiding adverse selection?

				Ω	1			
time	\mathcal{X}_0^1	M _T	M_{τ}^{b}	$C_{\tau}^{b,1}$	$C_{\tau}^{2,1}$	$L_{\tau}^{b,1}$	$L_{\tau}^{2,1}$	\mathcal{X}_t^1
t ₀	(2175.75, 2176.0, 102, 82)	{}	{}	{}	{}	{}	{}	(2175.75, 2176.0, 102, 82)
t ₀	(2175.75, 2176.0, 102, 82)	{}	{}	{}	{}	{1}	{}	(2175.75, 2176.0, 103, 82)
t_1	(2175.75, 2176.0, 102, 82)	{103}	{}	{}	{}	{1}	{}	(2175.5, 2176.0, 177, 82)
t ₂	(2175.75, 2176.0, 102, 82)	{103}	{}	{}	{}	{1}	{23}	(2175.5, 2175.75, 177, 23)

Table: The state of the top of the top-of-the-book \mathcal{X}^1_t is updated by data \mathcal{D}^1_{τ} .

Fill Ratios

In the event of a sell market order arriving at time t, the trade-to-book ratio of a level j bid limit order, $L_0^{b,j}$, placed at time t_0 is:

Trade-to-Book Ratio

$$\mathsf{R}_t(L_0^{b,j};\mathcal{D}_{\tau}^{b,j},\omega) = \frac{M_t^s}{Q_0^{b,j} - \left(\sum_{u \in \mathbf{t}^s} M_u^s + \omega \sum_{i=1}^j \sum_{u \in \mathbf{t}^c,i} C_u^{b,i} - \sum_{i=1}^j \sum_{t \in \mathbf{t}^{b,i}} \mathbf{1}_{\{\phi_{u,u} < \phi_{u,t_0}\}} L_u^{b,i}\right)}$$

- $Q_0^{b,j}:=\sum_{i=1}^j q_{t_0}^{b,i}$ is the sum of the depths of the queue at time t_0 up to the j^{th} bid level
- $\sum_{u \in t^s} M_u^s$ are the sell market orders arriving at times t_s ;
- $\sum_{u \in \mathbf{t}^c, i} C_u^{b,i}$ are the level i bid orders cancelled at times $\mathbf{t}^{c,i}$;
- 1_{{φ_{u,u}<φ_{u,t₀}}} is an indicator function returning unity if a subsequent limit order placed at time u has higher queue priority than the time t₀ reference limit order; and
- $\omega \in [0,1]$ is an unknown cancellation parameter which denotes the proportion of cancellations of Gracis with higher queue priority than the reference limit order over the interval τ .

				Ω	1			
time	\mathcal{X}_0^1	M _T	M_{τ}^{b}	$C_{\tau}^{b,1}$	$C_{\tau}^{2,1}$	$L_{\tau}^{b,1}$	$L_{\tau}^{2,1}$	\mathcal{X}_{t}^{1}
t ₀	(2175.75, 2176.0, 102, 82)	{}	{}	{}	{}	{}	{}	(2175.75, 2176.0, 102, 82)
t ₀	(2175.75, 2176.0, 102, 82)	{}	{}	{}	{}	{1}	{}	(2175.75, 2176.0, 103, 82)
t_1	(2175.75, 2176.0, 102, 82)	{103}	{}	{}	{}	{1}	{}	(2175.5, 2176.0, 177, 82)
t_2	(2175.75, 2176.0, 102, 82)	{103}	{}	{}	{}	{1}	{23}	(2175.5, 2175.75, 177, 23)

Table: The state of the top of the top-of-the-book \mathcal{X}^1_t is updated by data \mathcal{D}^1_{τ} .

Figure: An exemplary sequence of limit order book updates in the ES futures market (ESU6) is shown before and after the arrival of a sell market order.

time	\mathcal{X}_t^1	M ^s	$L_t^{a,1}$
t ₀	(2175.75, 2176.0, 103, 82)	0	0
t_1	(2175.5, 2176.0, 177, 82)	103	0
t ₂	(2175.5, 2175.75, 177, 23)	0	23

Table: The limit order book of ESU6 before and after the arrival of the sell aggressor.

Notation

- LOB state: $\mathcal{X}_t := (\mathbf{s}_t^b, \mathbf{s}_t^a, \mathbf{q}_t^b, \mathbf{q}_t^a)$
- Limit orders: $L_t^b := (L_t^{b,1}, \dots, L_t^{b,n}).$ $L_t^a := (L_t^{a,1}, \dots, L_t^{a,n}).$
- Market orders: M_t^b and M_t^s
 ('aggressors')
- Cancelations: $C_t^b := (C_t^{b,1}, \dots, C_t^{b,n}),$ $C_t^a := (C_t^{a,1}, \dots, C_t^{a,n})$

Figure: An exemplary sequence of limit order book updates in the ES futures market (ESU6) is shown before and after the arrival of a sell market order.

time	\mathcal{X}_t^1	M _t	$L_t^{2,1}$
t ₀	(2175.75, 2176.0, 103, 82)	0	0
tı	(2175.5, 2176.0, 177, 82)	103	0
t ₂	(2175.5, 2175.75, 177, 23)	0	23

Table: The limit order book of ESU6 before and after the arrival of the sell aggressor.

Notation

- LOB state: $\mathcal{X}_t := (\mathbf{s}_t^b, \mathbf{s}_t^a, \mathbf{q}_t^b, \mathbf{q}_t^a)$
- Limit orders: $L_t^b := (L_t^{b,1}, \dots, L_t^{b,n}),$ $L_t^a := (L_t^{a,1}, \dots, L_t^{a,n})$
- Market orders: M_t^b and M_t^s
 ('aggressors')
- Cancelations: $C_t^b := (C_t^{b,1}, \dots, C_t^{b,n}),$ $C_t^a := (C_t^{a,1}, \dots, C_t^{a,n})$

Fill Ratios

In the event of a sell market order arriving at time t, the trade-to-book ratio of a level j bid limit order, $L_0^{b,j}$, placed at time t_0 is:

Trade-to-Book Ratio

$$\mathsf{R}_t(L_0^{b,j};\mathcal{D}_{\tau}^{b,j},\omega) = \frac{M_t^s}{Q_0^{b,j} - \left(\sum_{u \in \mathbf{t}^s} M_u^s + \omega \sum_{i=1}^j \sum_{u \in \mathbf{t}^c,i} C_u^{b,i} - \sum_{i=1}^j \sum_{t \in \mathbf{t}^{b,i}} \mathbf{1}_{\{\phi_{u,u} < \phi_{u,t_0}\}} L_u^{b,i}\right)}$$

- $Q_0^{b,j}:=\sum_{i=1}^j q_{t_0}^{b,i}$ is the sum of the depths of the queue at time t_0 up to the j^{th} bid level
- $\sum_{u \in t^s} M_u^s$ are the sell market orders arriving at times t_s ;
- $\sum_{u \in \mathbf{t}^{c,i}} C_u^{b,i}$ are the level i bid orders cancelled at times $\mathbf{t}^{c,i}$;
- 1_{{φ_{u,u}<φ_{u,t₀}}} is an indicator function returning unity if a subsequent limit order placed at time u has higher queue priority than the time t₀ reference limit order; and
- ω ∈ [0,1] is an unknown cancellation parameter which denotes the proportion of cancellations of orders with higher queue priority than the reference limit order over the interval τ.

Example: FIFO market

- 1. Suppose at time t_0^- the queue depth at the best bid is 50. The largest order has size 20.
- The reference limit order to buy 50 contracts at the best bid level is received by the exchange at time t₀.
- 3. A market sell order of size 25 arrives in $(t_0, t]$.
- 4. The best bid for 20 is cancelled in $(t_0, t]$.
- The queue position of the reference order consequently advances so that there are 5 contracts ahead of it.

If a new sell market order of size 10 arrives at time t then its trade-to-book ratio, with respect to the reference limit order, has the value

$$\mathcal{R}_t(50;\mathcal{D}_{ au}^1,1) = rac{10}{50+50-(25+1\cdot 20+0)} = 2/11$$
 (partial fill)

Definition of a Market Making Strategy

Market Making Strategy

A market making strategy is the pair $\mathcal{L}_t := (\mathcal{L}_t^a, \mathcal{L}_t^b)$ representing the quoting of a bid and ask at time t.

$$\mathcal{L}^{a}(\hat{Y}_{0}) egin{cases} \{0,L\}, & \hat{Y}_{0}=1, \ \{L,0\}, & \hat{Y}_{0}=0, \ \{L,0\}, & \hat{Y}_{0}=-1. \end{cases}$$

$$\mathcal{L}^b(\hat{Y}_0) egin{cases} \{L,0\}, & \hat{Y}_0 = 1, \ \{L,0\}, & \hat{Y}_0 = 0, \ \{0,L\}, & \hat{Y}_0 = -1. \end{cases}$$

Spread State

The state of the spread at time t based on the market making strategy \mathcal{L}_0 is a function $Z:[-1,1]\cap\mathbb{Z}\to[-1,1]\cap\mathbb{Z}$ of the form

$$Z_{t}(\hat{Y}_{0}) = \begin{cases} 1, & A := \bigcup_{k=1}^{n} \{\mathcal{R}_{t}^{k,a} \geq 1\} \cap \bigcup_{k=1}^{n} \{\mathcal{R}_{t}^{k,b} \geq 1\} \neq \emptyset, \\ -1, & B := \bigcup_{k=1}^{n} \{\mathcal{R}_{t}^{k,a} < 1\} \cap \bigcup_{k=1}^{n} \{\mathcal{R}_{t}^{k,b} < 1\} \neq \emptyset, \\ 0, & (A \cup B)^{c} \neq \emptyset. \end{cases}$$

Realized P&L

Let $\Phi: [-1,1] \cap \mathbb{Z} \to \mathbb{R}$ denote the realized P&L from capturing the spread or adverse selection, after including transactions costs c:

$$\Phi(z) = \begin{cases} \mathcal{L}^{a}(\hat{Y}_{t}) \cdot \mathbf{s}_{t}^{a} - \mathcal{L}^{b}(\hat{Y}_{t}) \cdot \mathbf{s}_{t}^{b} - 2Lc, & z = 1, \\ \mathcal{L}^{a}(\hat{Y}_{t}) \cdot \mathbf{s}_{t}^{a} - \mathcal{L}^{b}(\hat{Y}_{t}) \cdot \mathbf{s}_{t}^{b} - L(\delta + 2c), & z = 0. \end{cases}$$

The size of the order on each side of the book is assumed to be the same $|\mathcal{L}^a| = |\mathcal{L}^b| = L$, δ is the spread and c is the transaction cost per contract.

 The realized P&L from capturing the spread or adverse selection

$$\Phi(z) = \begin{cases} L\left(\delta n(\hat{Y}_0) - c'\right), & 1\\ L\left(\delta(n(\hat{Y}_0) - 1) - c'\right), & 0 \end{cases}$$

- c' is a round-trip transaction cost
- $n: [-1,1] \cap \mathbb{Z} \to [1,2] \cap \mathbb{Z}$ with n(0) = 1 and n(-1) = n(1) = 2.
- The cash flow at time t from the strategy \mathcal{L}_0 as a function of the prediction \hat{Y}_0 is given by

$$V_t(\hat{Y}_0) = \sum_{z \in \{0,1\}} \mathbf{1}_{\{Z_t(\hat{Y}_0)=z\}} \Phi(z).$$

Toy Example: Strategies

 $MM_1 = (\{1,0\},\{1,0\})$ simply places a one lot bid at the inside market and does not use a prediction.

 $MM_2 = (\mathcal{L}_0^a, \mathcal{L}_0^b)$ uses the prediction \hat{Y}_0 :

$$\mathcal{L}^{a}(\hat{Y}_{0}) = \begin{cases} \{0,1\}, & \hat{Y}_{0} = 1, \\ \{1,0\}, & \hat{Y}_{0} = 0, \\ \{1,0\}, & \hat{Y}_{0} = -1. \end{cases} \qquad \mathcal{L}^{b}(\hat{Y}_{0}) = \begin{cases} \{1,0\}, & \hat{Y}_{0} = 1, \\ \{1,0\}, & \hat{Y}_{0} = 0, \\ \{0,1\}, & \hat{Y}_{0} = -1. \end{cases}$$

Toy Example with Parametric Fill Probabilities

Figure: The expected realized P&L of strategy MM₂ compared with strategy MM₁ for the following configuration $a=0.5, b=0.5, \lambda_1=1$. The spread of a=0.5 and the round-trip transaction cost is c=\$0.7.

Confusion Matrix

The confusion matrix is a function $C: \mathbb{R}^+ \to \mathbb{R}_+^{M \times M}$, M = 2m+1 of the form

$$C_{ij}(t) := P(\hat{Y}_t = y_j \mid Y_t = y_i), \forall i, j \in \{1, \dots, M\} \times \{1, \dots, M\},$$

for a predicted state $\hat{Y}_t \in \mathbf{y} := \{ [-m, m] \cap \mathbb{Z} \text{ and a true state } Y_t \in \mathbf{y}.$

Trade Information Matrix

The trade information matrix is a function $T: \mathbb{R}^+ \to \mathbb{R}^{M \times M}$ given by

$$T_{ij}(t;\Omega_0^k,\mathcal{D}_{\tau}^k,\omega) := P(Y_0 = y_i)\mathbb{E}[V_t(\hat{Y}_0 = y_j)|Y_0 = y_i,\hat{Y}_0 = y_j]$$

which uses the triple $\Omega_0^k := (\mathcal{L}_0^k, \hat{Y}_0, Y_0)$, consisting of predictions \hat{Y}_0 , the true state Y_t and the k^{th} level offer placed by a strategy \mathcal{L}_0 at time t_0 , in addition to the order book events \mathcal{D}_-^k .

Expected Cash Flow

The expected cash flow from the triple $\Omega_0 := (\mathcal{L}_0, \hat{Y}_0, Y_0)$ is

$$\mathbb{E}[V_t] = tr(C(t_0)T'(t))$$

where T' denotes the transpose of T.

		$\hat{Y}_0 = y$				$\hat{Y}_0 = y$	
	-1	0	1		-1	0	1
-1	1.062	1.062	1.062	-1	2.195,	1.062	1.0695
	1				9.660		
1	1.062	1.062	1.062	1	1.0695	1.062	2.195

Table: Trade information matrices for the MM_1 (left) and MM_2 (right) strategies evaluated at elapsed time t=0.2.

Spatio-Temporal Model

The response is

$$Y_t = \Delta p_{t+h}^t \tag{1}$$

- Δp^t_{t+h} is the forecast of discrete mid-price changes from time t to t + h, given measurement of the predictors up to time t.
- The predictors are embedded

$$x = x^{t} = \text{vec} \begin{pmatrix} x_{1,t-k} & \dots & x_{1,t} \\ \vdots & & \vdots \\ x_{n,t-k} & \dots & x_{n,t} \end{pmatrix}$$
 (2)

 n is the number of quoted price levels, k is the number of lagged observations, and x_{i,t} ∈ [0,1] is the relative depth, representing liquidity imbalance, at quote level i:

$$x_{i,t} = \frac{q_t^{a,i}}{q_t^{a,i} + q_t^{b,i}}. (3)$$

Spatial-Temporal Representation

Figure: A space-time diagram showing the limit order book. The contemporaneous depths imbalances at each price level, $x_{i,t}$, are represented by the color scale: red denotes a high value of the depth imbalance and yellow the converse. The limit order book are observed to polarize prior to a price movement.

Historical Data

- At any point in time, the amount of liquidity in the market can be characterized by the cross-section of book depths.
- We build a mid-price forecasting model based on the cross-section of book depths.

Timestamp	$s_t^{b,1}$	$s_t^{b,2}$	 $q_t^{b,1}$	$q_t^{b,2}$	 $s_t^{a,1}$	$s_t^{a,2}$	 $q_t^{a,1}$	$q_t^{a,2}$	 Yt
06:00:00.015	2175.75	2175.5	 103	177	 2176	2176.25	 82	162	 -1
06:00:00.036	2175.5	2175.25	 177	132	 2175.75	2176	 23	82	 0

Table: The limit order book of ESU6 before and after the arrival of the sell aggressor. Here, the response is the mid-price movement over the subsequent interval, in units of ticks. $s_t^{b,i}$ and $q_t^{b,i}$ denote the level i quoted bid price and depth of the limit order book at time t. $s_t^{a,i}$ and $q_t^{a,i}$ denote the corresponding level i quoted ask price and depth.

The Price Impact of Order Flow

Figure: The black line represents the observed change in mid-price over a 34 milli-second period from 16:37:52.560 to 16:37:52.594. The liquidity imbalance (blue), scaled here to the [-1,1] interval, although useful in predicting the direction of the next occurring price change, is generally a poor choice for predicting when the price change will occur. The order flow is a better predictor of next-event price movement, although is difficult to interpret when either of the buy (red) and sell order flows (green) are small.

The Price Impact of Order Flow

Figure: The black line represents the observed change in mid-price over a 34 milli-second period from 16:37:52.560 to 16:37:52.594. The liquidity imbalance (blue), scaled here to the [-1,1] interval, although useful in predicting the direction of the next occurring price change, is generally a poor choice for predicting when the price change will occur. The order flow is a better predictor of next-event price movement, although is difficult to interpret when either of the buy (red) and sell order flows (green) are small.

The Price Impact of Order Flow

Figure: The black line represents the observed change in mid-price over a 34 milli-second period from 16:37:52.560 to 16:37:52.594. The liquidity imbalance (blue), scaled here to the [-1,1] interval, although useful in predicting the direction of the next occurring price change, is generally a poor choice for predicting when the price change will occur. The order flow is a better predictor of next-event price movement, although is difficult to interpret when either of the buy (red) and sell order flows (green) are small.

ROC

Figure: The Receiver Operator Characteristic (ROC) curves of a binary RNN classifier over varying prediction horizons. In practice, the prediction horizon should be chosen to adequately account for latency between the trade execution platform and the exchange.

Comparison of Empirical Probabilities of Flips and Fills

MM1		У	
	-1	0	1
$P(Y_0 = y)$	0.134	0.732	0.134
$P(R_t^{a,0} \geq 1 Y_0 = y)$	0.074	0.67	0.581
$P(R_t^{b,0} \geq 1 Y_0 = y)$	0.563	0.615	0.107
$P(Z=1 Y_0=y)$	0.042	0.412	0.062
$P(Z=0 Y_0=y)$	0.554	0.461	0.563

MM2	у					
	-1	0	1			
$P(Y_0 = y)$	0.134	0.732	0.134			
$P(R_t^{a,1} \ge 1 Y_0 = y)$	0.007	0.511	0			
$P(R_t^{a,2} \ge 1 Y_0 = y)$	0	0	0.421			
$P(R_t^{b,1} \ge 1 Y_0 = y)$	0	0.504	0.011			
$P(R_t^{b,2} \ge 1 Y_0 = y)$	0.403	0	0			

Table: The estimated empirical price movement probabilities, quote fill probabilities and spread fill probabilities conditioned on the movement of the true state over a forecasting horizon of t=h=1s. Each column shows the corresponding conditional probabilities for each value of Y_0 .

MM2 Trade Information Matrices

Level 1		$\hat{Y}_0 = y$	
	-1	0	1
-1	0.014	0.014	0.014
0	3.324	3.324	3.324
1	0.045	0.045	0.045
Level 2		$\hat{Y}_0 = y$	
	-1	0	1
-1	0.604	0	0
0	2.457	2.225	4.059
1	0	0	0.640

Table: The trade information matrix for all quotes placed at the inside market (top) and at the next price level away from the inside market (bottom).

Page 30 of 33

Using Predictions for Market Making

Figure: This figure compares the expected P&L of the two market market strategies as a function of error ϵ in the confusion matrix. It is observed that the expected realized profit from MM2 (red) linearly decays with ϵ , to the extent that it can become less profitable than the baseline strategy MM1 (black).

Using Predictions for Market Making

Figure: This figure compares the expected P&L of the two market market strategies as a function of error ϵ in the confusion matrix. It is observed that the expected realized profit from MM2 (red) linearly decays with ϵ , to the extent that it can become less profitable than the baseline strategy MM1 (black).

