The Term Structure of Liquidity: A Liquidation Game Approach

Agostino Capponi Albert J. Menkveld Hongzhong Zhang

Columbia, VU Amsterdam and Tinbergen Institute, Columbia

July 11, 2018

Empirical Patterns of Execution

- Empirical study of the market impact of metaorders: Zarinelli, Treccani, Farmer, and Lillo (2015)
- Most comprehensive study using execution data from Ancerlo Ltd, 7 million metaorders in Russell 3000 index stocks from 2007-2009
- Key findings:
 - Participation rate, defined as the ratio of order size to the market volume over the same trading period, negatively correlates with the duration of liquidation.
 - Price impact subsides before the end of the liquidation: it decays as the metaorder is being executed
 - After liquidation, price impact decays in (square root of) time, irrespective of duration.
 - Price impact at the end of liquidation is concave in the order size

Objective

- Endogeneize both the demand and supply of liquidity:
 - HFTs intermediate between randomly arriving buyers and sellers and a large liquidating institution
 - HFTs strategically compete over the traded quantities
 - The liquidity-demanding investor optimally chooses the liquidation strategy to minimize its expected costs of execution
 - HFTs set prices taking into account the execution strategy of the liquidating investor
 - Each HFT maximizes the expected discounted trading revenue minus the flow costs of inventory holdings

Market Environment: the Institutional Investor

- Duration of liquidation D is sampled from an independent exponential distribution with mean $1/\nu$.
- The institutional investor can conduct:
 - Stealth trading: the sampled duration is not revealed to the market makers, and the same liquidation rate is used for all durations
 - Sunshine trading: the sampled duration is revealed to the market makers, and the liquidation rate may depend on the value of the sampled duration
- Let b_t be the bid price offered by the market makers at time t, then the institutional investor's objective is

$$\sup_{\bar{f}>0} \mathbb{E}\left[\int_0^D e^{-\beta t}\bar{f}\times (b_t-S_t+\tilde{p})dt \middle| D \text{ iff sunshine}\right]$$

Market Environment: Market Makers

- N market makers split the liquidation stream from the institutional investor
- Market maker n chooses the amount it plans to buy from/sell to the randomly arriving sellers and buyers at time $t: x_t^{b,n}, x_t^{a,n}, n = 1, ..., N$
- The aggregated strategies of the N market makers collectively determine the ask and bid prices via market clearing:

$$\begin{cases} \sum_{n=1}^{N} x_{t}^{a,n} = c(S_{t} + \tilde{p} - a_{t}) \\ \sum_{n=1}^{N} x_{t}^{b,n} = c(b_{t} - S_{t} + \tilde{p}) \end{cases} \Rightarrow \begin{cases} a_{t} = S_{t} + \tilde{p} - \frac{1}{c} \sum_{n=1}^{N} x_{t}^{a,n} \\ b_{t} = S_{t} - \tilde{p} + \frac{1}{c} \sum_{n=1}^{N} x_{t}^{b,n} \end{cases}$$

• $(x_t^{a,n})$ and $(x_t^{b,n})$ are Markov predictable strategies (dependent on t, \bar{f} and the inventory level)

The Objective of Market Makers

Market maker n solves

$$\max_{(x_t^{a,n},x_t^{b,n})\in\mathcal{A}} \mathbb{E}\left[\int_0^\infty e^{-\beta t} (dW_t^{(x,n)} - \Theta\left(I_t^{(x^n,n)}\right)^2 dt)\right]$$

where A is the collection of all admissible strategies subject to:

$$dW_t^{(x,n)} = -b_t \cdot \frac{\bar{f}}{N} \mathbf{1}_{t \leq D} dt + a_t \cdot x_t^{a,n} dN_t^B - b_t \cdot x_t^{b,n} dN_t^S + S_t dI_t^{(x^n,n)}$$

$$dI_t^{(x^n,n)} = \underbrace{\frac{\bar{f}}{N} \mathbf{1}_{t \leq D} dt}_{\text{Shares liquidated by institution}} + \underbrace{x_t^{b,n} dN_t^S}_{\text{Shares bought from sell investors}} - \underbrace{x_t^{a,n} dN_t^B}_{\text{Shares sold to buy investors}}$$

Look for symmetric equilibria

Dynamic Programming Formulation

- Fix a liquidation strategy $f \equiv f 1_{t \leq D}$.
- Given $I_t^{(x^n,n)} = i$, consider the value function

$$V_n(t, i; f)$$

$$:= \sup_{(x_u^{a,n}, x_u^{b,n}) \in \mathcal{A}} \mathbb{E} \left[\int_0^\infty e^{-\beta(u-t)} (dW_u^{(x,n)} - \Theta\left(I_u^{(x^n,n)}\right)^2 du) | I_t^{(x^n,n)} = i \right]$$

- Value independent of fundamental since revenue is calculated relative to the fundamental
- Transition of $I_t^{(x^n,n)}$ given $I_{t-}^{(x^n,n)} = i$ and $(x_t^{a,n}, x_t^{b,n})$

$$I_t^{(x^n,n)} = \begin{cases} i - x_t^{a,n}, & \text{w.p. } \lambda dt, \\ i + x_t^{b,n}, & \text{w.p. } \lambda dt, \\ i, & \text{else} \end{cases}$$

The Value Function: Stealth Trading

Theorem 3.1

Let A be the unique positive root to the following equation

$$\Theta - \beta A = \frac{8c\lambda A^2(1+cA)}{(N+1+2cA)^2}.$$

Then the optimal value of market maker n is given by

$$V_n(t,i;f) = -Ai^2 + B(t,\bar{f})i + C(t,\bar{f}),$$

where $B(t,\bar{f}) = -\bar{f} \frac{\delta-\beta}{2c\lambda} \frac{N+2cA}{N} \frac{1}{\nu+\delta} 1_{t\leq D}$ and $\delta = \Theta/A$. Optimal prices are given by

$$\begin{cases} a_t(i, \bar{f}) = S_t + \frac{p(1 + 2cA) - 2NAi + NB(t, \bar{f})}{N + 1 + 2cA} \\ b_t(i, \bar{f}) = S_t + \frac{-p(1 + 2cA) - 2NAi + NB(t, \bar{f}) - \frac{\bar{f}}{c\lambda} 1_{t \le D}}{N + 1 + 2cA} \end{cases}$$

- Before the liquidation is terminated, the price policy functions are stationary, i.e. independent of t
- Constant bid-ask spread during and after the investor's liquidation
- Liquidation widens the bid-ask spread
- Liquidation drives down both ask and bid prices when the inventory level stays put - price pressure from liquidation. Sudden price corrections at t = D.

Corollary 3.2

If $I_0^{(x^n,n)} = 0$, the expected inventory at $t \le D$ is given by $(M = \frac{4c\lambda A}{N+1+2cA})$

$$g(t) \equiv \mathbb{E}[I_t^{(x^n,n)}] = \frac{\bar{f}}{N} \frac{N + 2cA}{N + 1 + 2cA} \frac{\beta + \nu}{\delta + \nu} \frac{1 - e^{-Mt}}{M}$$

 Hence, expected price trajectories are monotonically decreasing in t Agostino Capponi, Albert J. The Term Structure of Liquidity: A Liquida

The Value Function: Stealth Trading

Theorem 3.1

Let A be the unique positive root to the following equation

$$\Theta - \beta A = \frac{8c\lambda A^2(1+cA)}{(N+1+2cA)^2}.$$

Then the optimal value of market maker n is given by

$$V_n(t,i;f) = -Ai^2 + B(t,\bar{f})i + C(t,\bar{f}),$$

where $B(t,\bar{f}) = -\bar{f} \frac{\delta-\beta}{2c\lambda} \frac{N+2cA}{N} \frac{1}{\nu+\delta} 1_{t\leq D}$ and $\delta = \Theta/A$. Optimal prices are given by

$$\begin{cases} a_t(i,\bar{f}) = S_t + \frac{p(1+2cA) - 2NAi + NB(t,\bar{f})}{N+1+2cA} \\ b_t(i,\bar{f}) = S_t + \frac{-p(1+2cA) - 2NAi + NB(t,\bar{f}) - \frac{\bar{f}}{c\lambda}1_{t \leq D}}{N+1+2cA} \end{cases}$$

- Zarinelli, Treccani, Farmer, and Lillo (2015) find empirically that price impact is concave in the size of the liquidated order
- We define the price impact as the absolute value of the expected midguote deviation from the fundamental at D, i.e.

$$PI = \frac{2NAg(D) + N|B(D, \overline{f})| + \frac{\overline{f}}{2c\lambda}}{N + 1 + 2cA}$$

- $|B(D, \bar{f})|$ is independent of D, and g(D) is concave in D.
- Hence, price impact is concave in the total liquidation size fD.

Price Impact and Liquidation Size

- Zarinelli, Treccani, Farmer, and Lillo (2015) find empirically that price impact is concave in the size of the liquidated order
- We define the price impact as the absolute value of the expected midguote deviation from the fundamental at D, i.e.

$$PI = \frac{2NAg(D) + N|B(D, \overline{f})| + \frac{\overline{f}}{2c\lambda}}{N + 1 + 2cA}$$

- $|B(D, \bar{f})|$ is independent of D, and g(D) is concave in D.
- Hence, price impact is concave in the total liquidation size fD.

The Value Function: Sunshine Trading

Theorem 3.3

Let A be the unique positive root to the following equation

$$\Theta - \beta A = \frac{8c\lambda A^2(1+cA)}{(N+1+2cA)^2}.$$

Then the optimal value of market maker n is given by

$$V_n(t,i;f) = -Ai^2 + \tilde{B}(t,\bar{f})i + \tilde{C}(t,\bar{f}),$$

where $\tilde{B}(t,\bar{f})=-\bar{f}\frac{\delta-\beta}{2c\lambda}\frac{N+2cA}{N}\frac{1-e^{-\delta(D-t)}}{\delta}1_{t\leq D}$ and $\delta=\Theta/A$. Optimal prices are given by

$$\begin{cases} a_t(i,\bar{f}) = S_t + \frac{p(1+2cA) - 2NAi + N\tilde{B}(t,\bar{f})}{N+1+2cA} \\ b_t(i,\bar{f}) = S_t + \frac{-p(1+2cA) - 2NAi + N\tilde{B}(t,\bar{f}) - \frac{\bar{f}}{c\lambda}1_{t \leq D}}{N+1+2cA} \end{cases}$$

Price Policy Implications: Sunshine Trading

- Before liquidation ends, the price policy functions are time-dependent, continuously converging to the stationary strategies at time t=D
- Constant bid-ask spread during and after the liquidation
- Liquidation widens the bid-ask spread
- Liquidation drives down both ask and bid prices when the inventory level stays put - price pressure from liquidation. No sudden price corrections to the ask price at t = D.

The Value Function: Sunshine Trading

Theorem 3.3

Let A be the unique positive root to the following equation

$$\Theta - \beta A = \frac{8c\lambda A^2(1+cA)}{(N+1+2cA)^2}.$$

Then the optimal value of market maker n is given by

$$V_n(t,i;f) = -Ai^2 + \tilde{B}(t,\bar{f})i + \tilde{C}(t,\bar{f}),$$

where $\tilde{B}(t,\bar{f})=-\bar{f}\frac{\delta-\beta}{2c\lambda}\frac{N+2cA}{N}\frac{1-e^{-\delta(D-t)}}{\delta}1_{t\leq D}$ and $\delta=\Theta/A$. Optimal prices are given by

$$\begin{cases} a_t(i,\bar{f}) = S_t + \frac{p(1+2cA) - 2NAi + N\tilde{B}(t,\bar{f})}{N+1+2cA} \\ b_t(i,\bar{f}) = S_t + \frac{-p(1+2cA) - 2NAi + N\tilde{B}(t,\bar{f}) - \frac{\bar{f}}{c\lambda}1_{t \leq D}}{N+1+2cA} \end{cases}$$

Price Policy Implications: Sunshine Trading

- Before liquidation ends, the price policy functions are time-dependent, continuously converging to the stationary strategies at time t=D
- Constant bid-ask spread during and after the liquidation
- Liquidation widens the bid-ask spread
- Liquidation drives down both ask and bid prices when the inventory level stays put - price pressure from liquidation. No sudden price corrections to the ask price at t = D.

Page 20 of 4

Price Trajectories under Sunshine Trading

Corollary 3.4

If $I_0^{(x^n,n)} = 0$, the expected inventory at $t \leq D$ is given by

$$g(t) \equiv \mathbb{E}[I_t^{(x^n,n)}] = \frac{\bar{f}}{N} \frac{N + 2cA}{N + 1 + 2cA} \left(\frac{\beta}{\delta} \frac{1 - e^{-Mt}}{M} + \frac{\delta - \beta}{\delta} \frac{e^{\delta t} - e^{-Mt}}{M + \delta} e^{-\delta S} \right),$$

where $\delta = \Theta/A$. For t > D, we have $g(t) = g(D)e^{-M(t-D)}$.

Recall that the expected ask and bid prices are

$$\begin{cases} \mathbb{E}[a_{t}(i,\bar{f})] = S_{0} + \frac{p(1+2cA) - 2NAg(t) + NB(t,\bar{f})}{N+1+2cA} \\ \mathbb{E}[b_{t}(i,\bar{f})] = S_{0} + \frac{-p(1+2cA) - 2NAg(t) + NB(t,\bar{f}) - \frac{\bar{f}}{c\lambda}1_{t \leq D}}{N+1+2cA} \end{cases}$$

Participation Rate

- Participation rate measures the percentage of the liquidated order over the total trading volume in the same period.
- We formally define participation rate for liquidation duration D as R(D):

$$R(D) = \frac{D \cdot \bar{f}^*(D)}{\mathbb{E}[\mathsf{total\ volume}]}$$

• 1/R(D) is strictly increasing in D:

$$\frac{1}{R(D)} = \frac{N+2cA}{N+1+2cA} + \frac{2N}{N+1+2cA} \frac{c\lambda \tilde{p}}{\bar{f}^*(D)},$$

 Thus, the participation rate strictly decreases with the duration D of the liquidation. Page 25 of 43

Optimal Liquidation Rate: Sunshine Trading

Corollary 3.5

For sunshine trading, the institutional investor's expected proceeds are given by

$$\tilde{P}(D)\bar{f} - \tilde{Q}(D)(\bar{f})^2$$

for some positive functions of D, $\tilde{P}(D)$ and $\tilde{Q}(D)$ that depends on β , N, c, λ , \tilde{p} . The optimal liquidation rate for duration D is thus given by

$$\bar{f}^*(D) = \frac{\tilde{P}(D)}{2\tilde{Q}(D)}.$$

The optimal expected liquidation proceeds for duration D is $\frac{(P(D))^2}{\sqrt{\tilde{O}(D)}}$. Moreover, $\bar{f}^*(D)$ is strictly decreasing in D.

Price Trajectories under Sunshine Trading

Corollary 3.4

If $I_0^{(x^n,n)} = 0$, the expected inventory at $t \leq D$ is given by

$$g(t) \equiv \mathbb{E}[I_t^{(x'',n)}] = \frac{\bar{f}}{N} \frac{N + 2cA}{N + 1 + 2cA} \left(\frac{\beta}{\delta} \frac{1 - e^{-Mt}}{M} + \frac{\delta - \beta}{\delta} \frac{e^{\delta t} - e^{-Mt}}{M + \delta} e^{-\delta S} \right),$$

where $\delta = \Theta/A$. For t > D, we have $g(t) = g(D)e^{-M(t-D)}$.

Recall that the expected ask and bid prices are

$$\begin{cases} \mathbb{E}[a_{t}(i,\bar{f})] = S_{0} + \frac{p(1+2cA) - 2NAg(t) + NB(t,\bar{f})}{N+1+2cA} \\ \mathbb{E}[b_{t}(i,\bar{f})] = S_{0} + \frac{-p(1+2cA) - 2NAg(t) + NB(t,\bar{f}) - \frac{\bar{f}}{c\lambda}1_{t \leq D}}{N+1+2cA} \end{cases}$$

Expected Price Pressures (D = 4)

Price pressure: the deviation of prices from the fundamental, i.e.

$$a_t - S_t$$
, $b_t - S_t$

Optimal Liquidation Rate: Sunshine Trading

Corollary 3.5

For sunshine trading, the institutional investor's expected proceeds are given by

$$\tilde{P}(D)\bar{f} - \tilde{Q}(D)(\bar{f})^2$$

for some positive functions of D, $\tilde{P}(D)$ and $\tilde{Q}(D)$ that depends on β , N, c, λ , \tilde{p} . The optimal liquidation rate for duration D is thus given by

$$\bar{f}^*(D) = \frac{\tilde{P}(D)}{2\tilde{Q}(D)}.$$

The optimal expected liquidation proceeds for duration D is $\frac{(P(D))^2}{4\tilde{O}(D)}$. Moreover, $\bar{f}^*(D)$ is strictly decreasing in D.

Simulated Price Pressures (D=4)

Price reversal before the liquidation ends

Optimal Liquidation Rate: Sunshine Trading

Corollary 3.5

For sunshine trading, the institutional investor's expected proceeds are given by

$$\tilde{P}(D)\bar{f} - \tilde{Q}(D)(\bar{f})^2$$

for some positive functions of D, $\tilde{P}(D)$ and $\tilde{Q}(D)$ that depends on β , N, c, λ , \tilde{p} . The optimal liquidation rate for duration D is thus given by

$$\bar{f}^*(D) = \frac{\tilde{P}(D)}{2\tilde{Q}(D)}.$$

The optimal expected liquidation proceeds for duration D is $\frac{(P(D))^2}{4\tilde{O}(D)}$. Moreover, $\bar{f}^*(D)$ is strictly decreasing in D.

Is Information about Duration Valuable?

 Should the institutional investor conduct stealth trading or sunshine trading?

Private Information on Duration has Negative Value!

Theorem 3.6

Suppose the duration D is sampled from the exponential distribution with mean $1/\nu > 0$. Then, the optimal liquidation proceeds from sunshine trading, $\mathbb{E}[(\tilde{P}(D))^2/4\tilde{Q}(D)]$, are strictly higher than those under stealth trading, $P^2/4Q$.

- Revealing information on duration helps market maker to continuously adjust price policy functions, and reduces the execution costs of the liquidating investor
- This is beneficial to the liquidating investor
- Even in the presence of a monopolistic HFT, the investor is better off if he reveals information about the duration of the liquidation

Summary

- We study the time dimension of liquidity via a liquidation game of the Stackelberg type, with Cournot competition among market makers
- Liquidation reinforces price pressure and widens bid-ask spread
- Under stealth trading:
 - price impact is concave in the size of liquidation
 - price trajectories are monotone during liquidation
- Under sunshine trading:
 - participation rate negatively correlates with the liquidation duration
 - price reversal occurs prior to the end of liquidation
- Sharing information on duration is beneficial for the liquidating investor

Thank you for your attention!

Page 29 of 43

Summary

- We study the time dimension of liquidity via a liquidation game of the Stackelberg type, with Cournot competition among market makers
- Liquidation reinforces price pressure and widens bid-ask spread
- Under stealth trading:
 - price impact is concave in the size of liquidation
 - price trajectories are monotone during liquidation
- Under sunshine trading:
 - participation rate negatively correlates with the liquidation duration
 - price reversal occurs prior to the end of liquidation
- Sharing information on duration is beneficial for the liquidating investor