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Motivation

Given: Differentiable function f : R™ — R where m large
Want: Influential parameters of f

@ Detect active subspace S C R™ where
f most sensitive to change (varies strongly)

© Approximate f by response surface over S

Existing Work:

Active subspaces [Russi 2010]

Stochastic PDEs [Constantine et al. 2012, 2014], [Stoyanov et al. 2014]
Reduced-order nonlinear models [Bang et al. 2012]

Airfoil design and manufacturing [Namura et al. 2015], [Chen et al. 2011]
Combustion [Bauernheim et al. 2014], [Constantine et al. 2011]

Solar cells [Constantine et al. 2014]



Idea

Given: Function f: R™ -+ R
© From Vf(x) construct "sensitivity” matrix E € R™*™
© Dominant eigenvectors of E = active subspace &

Problem: Elements of E too expensive to compute

(high-dimensional integrals)

© Approximate E by Monte Carlo: E e Rmxm

© Dominant eigenvectors of E = approximate subspace S

A~

Our contribution: Probabilistic bound for sin Z(S,S)
Tight if: E has low numerical rank and large eigenvalue gap



Overview

© Assumptions
e "Sensitivity" matrix E
@ Active subspace S
@ Monte Carlo approximation E

o Approximate subspace S

© Accuracy of §
& Structural (deterministic) bound for subspace angle
@ Matrix concentration inequality
@ Probabilistic bound for number of Monte Carlo samples



Assumptions

The function is somewhat nice
o f: R™— R continuously differentiable

@ Lipschitz constant [|[Vf(x)|| <L (2 norm)

Monte Carlo sampling
@ Random vectors X € R™ with probability density p(x)

@ Expected value of function h with respect to X

E[h(X)] = /R () o)



" Sensitivity” Matrix E

Informative directional derivatives

E = - VF(x)(VF(x)T p(x)dx

@ E € R™™ symmetric positive semi-definite

Eigenvalue decomposition E = VAVT

Eigenvectors V = (vi ... vp)

vj is direction of sensitivity of f

Eigenvalues A = diag ()\1 )\m)
A= E [(VJ-TVf(X))Z} average sensitivity along v;



Active Subspace S

Dominant eigenvalues of E = VAVT

/\:diag ()\1 )\k )\k+1 )\m)

@ Large eigenvalue gap
Y T
® k dominant eigenvalues \;: Indicators of high sensitivity

® k dominant eigenvectors v;: Directions of high sensitivity

Orthonormal basis for active subspace

S = range(v1 vk)



~

Monte Carlo Approximation E

@ Sample n < m training points x; € R™ according to p(x)

E=1 Z VF(x) (VF(x))"

PN

@ Eigenvalue decomposition E=VAVT
K:diag</)\\1 /)\\k /):k—i-l Xm)
@ Assume: Eigenvalue gap in same location as for E

XlZ"'ZXk >>/):k+12"'2/):m

Orthonormal basis for approximate subspace

~

S = range (v, - vk)



Accuracy of Approximate Subspace

Approach
@ Structural (deterministic) bound
Bound sin A(S,g) in terms of ||E— E||

@ Probabilistic bound

Bound HE— E|| in terms of sampling amount n

© Combine the two bounds

~

Sampling amount n so that sin Z(S,S) < e



Structural Bound: Subspace Perturbation

based on [Stewart 1973]

@ Eigenvaluesof E: A >--- 2> X > M1 22 Ap
o Active subspace: S =range(v1 -+ w)

o Approximate subspace: S = range (i - W)

@ Small enough perturbation: HE— E|l < (% — Aks1)

Then R
IE — £l

sin Z S,§ < 4
(5.5) Ak — Akt1

If Akt1 — Ak > 0 then active subspace S well-conditioned



Probabilistic Bound: Matrix Perturbation

@ Want: Probabilistic bound for HE— E|
o Exact: E =[5, VF(x)(VF(x))" p(x)dx
@ Monte Carlo approximation: E = 1 > i1 VE(x) (VF(x)T

o Idea: Eis average of matrix-valued random variables
V() (VF(x))"

with mean E[Vf(x)(Vf(x))T] = E

Next: Matrix concentration for E-E



Matrix Bernstein Concentration [Minsker 2011, Tropp 2015]

Given

@ Independent random symmetric matrices X;, 1<, <n
@ Norm: maxi<j<n || Xj|| < 5

@ Zeromean: E[Xj] =0, 1<;<n

@ Matrix variance: ZJ'-’:IE[ij] < P for some P

o Tolerance: ¢ > ||P||Y?+2



Matrix Bernstein Concentration [Minsker 2011, Tropp 2015]

Given

@ Independent random symmetric matrices X;, 1<, <n
@ Norm: maxi<j<n || Xj|| < 5

@ Zeromean: E[Xj] =0, 1<;<n

@ Matrix variance: ZJ'-’:IE[ij] < P for some P

o Tolerance: ¢ > ||P||Y?+2

Probability that the sum is "large”

2 trace(P) < —e2/2 >
Pl x| >e] <42 exp (ot
= 1Pl 1P| + Be/3



Interpretation of Matrix Concentration

P Xn:xj
j=1

> €

trace (P) ( —e2/2 >
4"~V ) "=
= 4R PP+ Ao




Interpretation of Matrix Concentration

n

t P —e2/2
P ZXJ >e|l < 4 race ( )exp<€7/>

= 1P 1P|l + Be/3
® Sum = Deviation from the mean
n n n
S = Yox-B[Yx
j=1 j=1 j=1
0
@ Variance: Numerical rank* of P = Stable rank of P1/2
2
trace(P) ||P1/2H,:
1Pl | P12l

* Intrinsic dimension, effective rank



Applying the Matrix Concentration

Check the assumptions for E-E = ZJ'-’ZI X

o Independent random: X; =1 (Vf(x;)(Vf(x))" — E)
® Zero mean: E[Xj] =0

@ Bounded norm: ||Xj|| < L?/n

o Variance: E[X?] =% [ J(VFVF))T) p(x)dx — 52}

n

. 2
@ Bound for variance: P = L?E

J(VECTFE)T) p(x)ax = VAP /Vf(X)(Vf(X))Tp(X)dX
—_———

12

E



Applying the Matrix Concentration

Absolute error:

~ trace (E) n  &)2
PlIE—E|>¢| < 47exp<__7A
IE]l L2 ||E| +¢/3

No explicit dependence on problem dimension m
Error small, if E has low numerical rank



Applying the Matrix Concentration

Absolute error:

~ trace (E) n  &)2
PlIE—E|>¢| < 47exp<__7A
IE]l L2 ||E| +¢/3

No explicit dependence on problem dimension m
Error small, if E has low numerical rank

Relative error: Set é=||E||e

I|E - E| trace (E) ( IE|| €2/2 >
Plm———>¢| < 44— exp|—n—5
[ I E| IE|l [2 1+¢/3




Failure Probability

Given0<e<1

E-E trace (E E|| €/2
P[n HZ&] <4 trace(E) exp<_n| | ¢/ )

IE]l IE]| L2 1+4¢/3

numerical rank of E

The probability is high that E has relative error €, if

@ Function f is smooth:  [?/[|E|| ~ 1

@ E has low numerical rank:  trace (E)/|E|| < m



Relative Error for Monte Carlo Approximation

For any § > 0, with probability at least 1 — ¢

E-E
%S’Y"F\/’Y(’Y-Fﬁ)

where
12 In<4 trace(E)>
-~ 3n [|E]] 5 [E]

With probability 1 — §, approximation E is accurate, if

@ Function f is smooth:  L?/||E|| ~ 1

@ E has low numerical rank:  trace (E)/|E|| < m



Number of Monte Carlo Samples

For any § > 0, with probability at least 1 — ¢

IE-El _,
Ier =

if number of Monte Carlo samples is

3 L2 | <itrace(E))

"= e G E
With probability 1 — 4, only few samples to compute E, if

@ Function f is smooth:  L?/||E|| ~ 1

@ E has low numerical rank:  trace (E)/|E|| < m



Final bound: Deterministic 4+ Probabilistic

Assumptions

@ Lipschitz constant:  ||[Vf(x)|| <L

o Eigenvalues of E:
Ar > > A > Newq > o> A >0
1= = "k N ) k+1 = Z Am Z
Active subspace S o5 — %
1

Numerical rank:  nr(E) = (A1 +---+ Am)/M1

User-specified error tolerance: 0 < e < gap/4

User-specified failure probability: 0<d <1



Number of Monte Carlo Samples for
Subspace Approximation

With probability at least 1 — §

-~

sin Z(S,S) < 4¢/gap

if number of samples for approximating E is
3 12 4
> — —In| =nr(E
v Gy n(5mo)

With high probability, only few samples for accurate subspace S, if
@ Function f is smooth:  [?/[|E|| ~ 1

@ E has low numerical rank:  nr(E) < m

@ Subspace S is well-conditioned:  gap > 1



Summary

Want: Active subspace S of function f : R — R

Dominant eigenspace of "sensitivity” matrix E € R™*™

Compute: Subspace S from Monte Carlo approximation of E

-~

Contribution: Probabilistic bounds for sin Z(S,S)
@ No explicit dependence on problem dimension m
@ Number of samples to achieve user-specified error
at user-specified probability
@ Monte Carlo efficient if

E has low numerical rank
Subspace S well-conditioned (large eigenvalue gap)

@ Application: Construction of response surfaces

System of elliptic PDEs, coefficients are log-Gaussian random fields
Sensitivity matrix E has dimension m = 3,495

Active subspace S has dimension k = 10

Response surface accurate to 1-2 digits



