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Kernel Ridge Regression


• Given	dataset	​{(​𝐱↓𝑖 , ​𝐲↓𝑖 )}↓𝑖=1↑𝑛  and	kernel	func@on 𝜅( ​𝐱↓1 , ​𝐱↓2 ),	
the	problem	is	to	solve		

​​​min┬𝛂∈ ​ℝ↑𝑛   ⁠​‖𝐊𝛂−𝐘‖↓2↑2   ⁠+ λ​𝛂↑𝑇 𝐊𝛂 	
• Op@mal	solu@on:				

​𝜶↑⋆ =	 ​(𝐊+λ​𝐈↓n )↑−1 𝐘	

•  For	large	𝑛	(i.e.	 ​𝑛≈10↑6 ),	𝐊	does	not	even	fit	in	memory	



Iterative Methods 


•  Since	solu@on	doesn’t	fit	in	memory,	turn	to	itera@ve	methods	
• Classical	methods:	Conjugate-Gradient,	and	Gauss-Siedel	

• We	consider	randomized	block	GS	(block	coordinate	descent)	for	
solving	posi@ve-definite	systems	of	the	form	

𝐀𝛂=𝐲	
• Given	a	current	iterate	

	 ​​(𝛂↓𝑘+1 )↓J = ​​(𝛂↓𝑘 )↓J − ​​𝐀↓JJ ↑−1 ​(𝐀​𝛂↓𝑘 −𝐲)↓J 	



Sampling in Block GS


Two	reasonable	schemes,	given	a	blocksize	𝑝:	

•  Fixed	Par00on:	Divide	[𝑛] into	blocks	 ​J↓1 ,…, ​J↓​𝑛/𝑝   blocks	ahead	of	
@me.	During	the	iterates,	randomly	choose	a	block	​J↓​𝑡↓𝑘  	where	 ​𝑡↓𝑘 
~Unif({1,…, ​𝑛/𝑝 }).	

• Random	coordinates:	At	each	itera@on,	choose	uniformly	from	the	
set	{J∈ ​2↑[𝑛] : |J|=𝑝}.	



Sampling in Block GS


Fixed	par@@oning	is	preferable	from	a	systems	perspec@ve	(cache	
locality).	Random	coordinates	suffer	from	slower	memory	accesses.	
Why	use	random	coordinates?	
	
A	simple	example	where	the	sampling	makes	a	large	difference:	take	
​𝐀↓𝛽 =𝐈+ ​β/𝑛 𝟏 ​𝟏↑T 	
Try	GS	with	𝑛=5000, 𝑝=500,𝛽=1000.	



Sampling in Block GS




Convergence of Randomized GS


To	understand	why	the	behavior	differs,	look	at	the	theory	of	
randomized	GS	
	Theorem.			(Gower	and	Richtárik,	16)	
For	all	𝑘≥0,		

𝔼 ​‖​𝛂↓𝑘 − ​𝛂↓∗ ‖↓𝐀 ≤ ​(1−µ)↑𝑘/2 ​‖​𝛂↓0 − ​𝛂↓∗ ‖↓𝐀 ,	
where	µ= ​λ↓min (𝔼[​𝐏↓​𝐀↑𝟏/𝟐 𝐒 ]).	Here,	the	randomized	column	
selec@on	matrix	𝐒	depends	on	the	choice	of	sampling	scheme.	



Sampling in Block GS


For	our	example		
​𝐀↓𝛽 =𝐈+ ​β/𝑛 𝟏 ​𝟏↑T ,	



​µ↓part = ​𝑝/𝑛+β𝑝 	
	
	
​µ↓rand = ​µ↓part + ​𝑝−1/𝑛−1 ​β𝑝/𝑛+β𝑝 	

As	β→∞,	 ​µ↓part →1/β	whereas	 ​µ↓rand →𝑝/𝑛.	This	gap	is	arbitrarily	
large.		



Sampling Tradeoffs 


•  Systems	Perspec0ve:	fixed	par@@on	sampling	is	preferable.	Can	
cache	blocks	ahead	of	@me,	replicate	across	nodes,	etc.	Locality	is	
good	for	performance.	

• Op0miza0on	perspec0ve:	random	coordinates	is	preferable.	Each	
itera@on	of	GS	will	make	more	progress.	Locality	is	bad	for	
op9miza9on.	



What about acceleration? 


Add	a	Nesterov	momentum	step	to	the	iterates.	

• Does	the	same	sampling	phenomenon	occur	with	accelera@on?	
• Does	this	provide	the	√⁠µ 	behavior	we	expect?	
	
(Assuming	the	accelera@on	parameters	are	carefully	chosen)	



Prior State of Theory

The	behavior	of	accelerated	fixed-par00on	sampling	is	understood	
	Theorem.			(Nesterov	and	S@ch,	16)	
For	all	𝑘≥0,	accelerated	block	GS	with	fixed-par@@on	sampling	sa@sfies	

𝔼 ​‖​𝛂↓𝑘 − ​𝛂↓∗ ‖↓𝐀 ≾ ​(1−√⁠​𝑝/𝑛 ​µ↓part  )↑𝑘/2 ​‖​𝛂↓0 − ​𝛂↓∗ ‖↓𝐀 ,	
where	​µ↓part = ​λ↓min (𝔼[​𝐏↓​𝐀↑𝟏/𝟐 𝐒 ]).	Here,	the	randomized	
column	selec@on	matrix	𝐒	corresponds	to	fixed-par@@on	sampling.	

Thus	fixed-par@@on	sampling	loses	a	factor	of	√⁠𝑝/𝑛 	over	the	ideal	
Nesterov	rate.	



Main Result

Theorem.		
For	all	𝑘≥0,	accelerated	block	GS	with	any	(non-degenerate)	sampling	
scheme	sa@sfies	

𝔼 ​‖​𝛂↓𝑘 − ​𝛂↓∗ ‖↓𝐀 ≾ ​(1−𝜏)↑​𝑘/2  ​‖​𝛂↓0 − ​𝛂↓∗ ‖↓𝐀 .	
Here	𝜏=√⁠µ/ν ,	where	µ	is	as	before	and	ν	is	a	new	quan@ty	which	
behaves	roughly	like	𝑛/𝑝.	

We	prove	this	rate	is	sharp—there	exists	a	star@ng	point	which	
matches	the	rate	up	to	constants.	



Corollaries 

•  For	fixed	par@@on	sampling,	we	can	show	that	𝜈=𝑛/𝑝,	recovering	
Nesterov	and	S@ch’s	earlier	result.	Combined	with	the	sharpness	of	
the	rate,	this	proves	the	√⁠𝑝/𝑛 	loss	over	the	ideal	rate	is	real	for	the	
fixed-par@@on	scheme.	

•  For	random	coordinate	sampling,	we	can	prove	the	weaker	claim	
	
	
If	all	the	size	J	principal	submatrices	of	A	are	sufficiently	well-
condi@oned,	𝜈≈​𝑛/𝑝 .	

ν≤ ​𝑛/𝑝 ​max┬|J|=𝑝 ​​​
max┬𝑖∈J  ⁠​𝐀↓𝑖𝑖  /​λ↓min 
( ​𝐀↓JJ ) 	



Experiment: Accuracy vs Iteration




Experiment: Accuracy vs Time 




Overdetermined Ridge Regression


​min┬𝐰   {​𝑓(𝐰)= ⁠​1/𝑛 ​||𝐗𝐰−𝐲||↓2↑2 +𝛾​||𝐰||↓2↑2  }	

𝑛×𝑑	

Applica@ons:	
•  Basic	ML	
•  IRLS	for	 ​ℓ↓2 -penalized	GLMs	
•  Building	block	in	general	

op@mizers	
Two	Perspec@ves:	
•  (Op@miza@on)	Determinis@c	X,	y	
•  (Sta@s@cal)	Determinis@c	X,	

random	y	



Ridge Regression


𝑛×𝑑	

​min┬𝐰   {​𝑓(𝐰)= ⁠​1/𝑛 ​||𝐗𝐰−𝐲||↓2↑2 +𝛾​||𝐰||↓2↑2  }	

• Ef[icient and approximate solution?

• Use only part of the data?




Ridge Regression


​min┬𝐰   {​𝑓(𝐰)= ⁠​1/𝑛 ​||𝐗𝐰−𝐲||↓2↑2 +𝛾​||𝐰||↓2↑2  }	

Matrix Sketching:

•  Random selection

•  Random projection




Approximate Ridge Regression


​min┬𝐰   {​𝑓(𝐰)= ⁠​1/𝑛 ​||𝐗𝐰−𝐲||↓2↑2 +𝛾​||𝐰||↓2↑2  }	

•  Sketched solution: ​𝐰↑s 


•   𝑓(​𝐰↑s )≤(1+𝜖)​​min┬𝐰  ⁠𝑓(𝐰) 


s: sketch size 	

Optimization Perspective




Approximate Ridge Regression


​min┬𝐰   {​𝑓(𝐰)= ⁠​1/𝑛 ​||𝐗𝐰−𝐲||↓2↑2 +𝛾​||𝐰||↓2↑2  }	

•  Bias
 
 
 ​‖​𝐗w↑⋆ −𝔼 ​𝐗𝐰↑s 
‖↓2 


•  Variance 
 
 ​𝔼‖​𝐗w↑s −𝔼𝐗​𝐰↑s 
‖↓2↑2 


Statistical Perspective
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Matrix Sketching


𝐗	 ​𝐒↑𝑇 𝐗	

• We	consider	only	efficient	sketching	
procedures	
•  Time	cost	is	o(𝑛𝑑𝑠)	—	lower	than	
mul@plica@on.		

•  Examples:	
•  Leverage	score	sampling:	𝑂(𝑛𝑑​log ⁠𝑛 )	@me	
•  SRHT:				𝑂(𝑛𝑑​log ⁠𝑠 )	@me	



Sketched Ridge Regression


•  Sketched	solu@on:	




            	
•  Time:	𝑂(𝑠​𝑑↑2 )+ ​𝑇↓𝑠 	

•  ​𝑇↓𝑠 	is	the	cost	of	sketching	​𝐒↑𝑇 𝐗		
•  E.g.	 ​𝑇↓𝑠 =𝑂(𝑛𝑑​log ⁠𝑠 )	for	SRHT.	
•  E.g.	 ​𝑇↓𝑠 =𝑂(𝑛𝑑​log ⁠𝑛 )	for	leverage	score	sampling.	

• Versus	the	@me	for	the	full	RR	problem:	𝑂(𝑛​𝑑↑2 )	

​𝐰↑s = ​argmin┬𝐰  {​1/𝑛 ​||​𝐒↑𝑇 𝐗𝐰− ​𝐒↑𝑇 𝐲||↓2↑2 +𝛾​||𝐰||↓2↑2 }	
= ​(​𝐗↑𝑇 𝐒​𝐒↑𝑇 𝐗+𝑛𝛾​𝐈↓𝑑 )↑† (​𝐗↑𝑇 𝐒​𝐒↑𝑇 𝐲)            	



Results: Optimization Perspective




Optimization Perspective


For	the	sketching	methods	
•  SRHT	or	leverage	sampling	with	s= ​𝑂 (​𝛽𝑑/𝜖 ),	
•  uniform	sampling	with	s=𝑂(​𝜇 𝛽𝑑​log ⁠𝑑 /𝜖 ),	

𝑓(​𝐰↑s )≤(1+𝜖)𝑓(​𝐰↑⋆ )	holds	w.p.	0.9.	

•  𝐗∈ ​ℝ↑𝑛×𝑑 :  the design matrix

•  𝛾: the regularization parameter

•  𝛽= ​​||𝐗||↓2↑2 /​𝑛𝛾+||𝐗||↓2↑2  ∈(0, 1] 

•  𝜇∈[1, ​𝑛/𝑑 ]:  the row coherence of 𝐗	 



Optimization Perspective


For	the	sketching	methods	
•  SRHT	or	leverage	sampling	with	s= ​𝑂 (​𝛽𝑑/𝜖 ),	
•  uniform	sampling	with	s=𝑂(​𝜇 𝛽𝑑​log ⁠𝑑 /𝜖 ),	

𝑓(​𝐰↑s )≤(1+𝜖)𝑓(​𝐰↑⋆ )	holds	w.p.	0.9.	

																			 ​1/𝑛 ​||𝐗​𝐰↑s −𝐗​𝐰↑⋆ ||↓2↑2  ≤ 𝜖𝑓(​𝐰↑⋆ ).	

•  𝐗∈ ​ℝ↑𝑛×𝑑 :  the design matrix

•  𝛾: the regularization parameter

•  𝛽= ​​||𝐗||↓2↑2 /​𝑛𝛾+||𝐗||↓2↑2  ∈(0, 1] 

•  𝜇∈[1, ​𝑛/𝑑 ]:  the row coherence of 𝐗	 



Results: Statistical Perspective




Statistical Model


• 𝐗∈ ​ℝ↑𝑛×𝑑 : [ixed design matrix

•  ​𝐰↓0 ∈ ​ℝ↑𝑑 : the true and unknown model

• 𝐲=𝐗​𝐰↓0 +𝛅: observed response vector


•  ​𝛿↓1 , ⋯, ​𝛿↓𝑛 	are	random	noise	
•  𝔼[𝛅]=𝟎			and				𝔼[𝛅​𝛅↑𝑇 ]= ​𝜉↑2 ​𝐈↓𝑛 	



Bias-Variance Decomposition


• Risk:					𝑅(𝐰)= ​1/𝑛 𝔼 ​||𝐗𝐰−𝐗​𝐰↓0 ||↓2↑2 	
•  𝔼	is	taken	w.r.t.	the	random	noise	𝛅.	



Bias-Variance Decomposition


• Risk:					𝑅(𝐰)= ​1/𝑛 𝔼 ​||𝐗𝐰−𝐗​𝐰↓0 ||↓2↑2 	
•  𝔼	is	taken	w.r.t.	the	random	noise	𝛅.	
•  Risk	measures	predic@on	error.	



Bias-Variance Decomposition


• Risk:					𝑅(𝐰)= ​1/𝑛 𝔼 ​||𝐗𝐰−𝐗​𝐰↓0 ||↓2↑2 	

• R(𝐰)= ​bias↑2 (𝐰)+var(𝐰)	



Bias-Variance Decomposition


• Risk:					𝑅(𝐰)= ​1/𝑛 𝔼 ​||𝐗𝐰−𝐗​𝐰↓0 ||↓2↑2 	

• R(𝐰)= ​bias↑2 (𝐰)+var(𝐰)	
•  bias(​𝐰↑⋆ )=𝛾√⁠𝑛 ​||​(​𝚺↑2 +𝑛𝛾​𝐈↓𝑑 )↑−1 𝚺 ​𝐕↑𝑇 ​𝐰↓0 ||↓2 ,	
•  var(​𝐰↑⋆ )= ​​𝜉↑2 /𝑛 ​||​(​𝐈↓𝑑 +𝑛𝛾​𝚺↑−2 )↑−1 ||↓2↑2 ,	

•  bias(​𝐰↑s )=𝛾√⁠𝑛 ​||​(𝚺 ​𝐔↑𝑇 𝐒​𝐒↑𝑇 𝐔𝚺+𝑛𝛾​𝐈↓𝑑 )↑† 𝚺 ​𝐕↑𝑇 ​𝐰↓0 ||↓2 ,	
•  var(​𝐰↑s )= ​​𝜉↑2 /𝑛 ​||​(​𝐔↑𝑇 𝐒​𝐒↑𝑇 𝐔+𝑛𝛾​𝚺↑−2 )↑† ​𝐔↑𝑇 𝐒​𝐒↑𝑇 ||↓2↑2 ,	

•  Here	𝐗=𝐔𝚺 ​𝐕↑𝑇 	is	the	SVD.	

Optimal 
Solution 

Sketched 
Solution 



Statistical Perspective


For	the	sketching	methods	
•  SRHT	or	leverage	sampling	with	s= ​𝑂 (​𝑑/​𝜖↑2  ),	
•  uniform	sampling	with	s=𝑂(​𝜇 𝑑​log ⁠𝑑 /​𝜖↑2  ),	

the	following	hold	w.p.	0.9:	

1−𝜖≤ ​bias(​𝐰↑s )/bias(​𝐰↑⋆ ) ≤1+𝜖,	

(1−𝜖)​𝑛/𝑠  ≤ ​var(​𝐰↑s )/var(​𝐰↑⋆ )  ≤ (1+𝜖)​𝑛/𝑠 .	
	

•  𝐗∈ ​ℝ↑𝑛×𝑑 :  the design matrix

•  𝜇∈[1, ​𝑛/𝑑 ]:  the row coherence of 𝐗	 

Good!	

Bad!		Because	𝑛≫𝑠.	.	



Statistical Perspective


For	the	sketching	methods	
•  SRHT	or	leverage	sampling	with	s= ​𝑂 (​𝑑/​𝜖↑2  ),	
•  uniform	sampling	with	s=𝑂(​𝜇 𝑑​log ⁠𝑑 /​𝜖↑2  ),	

the	following	hold	w.p.	0.9:	

1−𝜖≤ ​bias(​𝐰↑s )/bias(​𝐰↑⋆ ) ≤1+𝜖,	

(1−𝜖)​𝑛/𝑠  ≤ ​var(​𝐰↑s )/var(​𝐰↑⋆ )  ≤ (1+𝜖)​𝑛/𝑠 .	
	

•  𝐗∈ ​ℝ↑𝑛×𝑑 :  the design matrix

•  𝜇∈[1, ​𝑛/𝑑 ]:  the row coherence of 𝐗	 

If	𝐲	is	noisy		is	noisy	

												variance	dominates	bias	

												𝑅(​𝐰↑𝑠 )≫𝑅( ​𝐰↑⋆ ).	



Consequence for selection of 
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Figure 3: Empirical study of classical sketch and Hessian sketch from statistical perspective.
The x-axis is the regularization parameter � (log-scale); the y-axes are
respectively bias2, variance, and risk (log-scale). We annotate the minimum risks
and optimal � in the plots

Classical sketch and Hessian sketch do not outperform each other in terms of the risk.
When variance dominates bias, Hessian sketch is better in terms of the risk; when bias
dominates variance, classical sketch is better. In the experiment yielding Figure 3, Hessian
sketch had lower risk than classical sketch. This is not generally true: if we used a smaller
⇠, so that the variance is dominated by bias, then classical sketch results in lower risks than
Hessian sketch.

4.4 Model Averaging: Optimization Objective

We use di↵erent intensity of noise—we set ⇠ = 10�2 or 10�1, where ⇠ defined in Section 4.1
indicates the intensity of the noise in the response vector y. We calculate the objective
function values f(wc

[g]) and f(wh

[g]) under di↵erent settings of g, �. We use di↵erent matrix
sketching but fix the sketch size s = 5, 000.

Theorem 8 shows that for large s, e.g., Gaussian projection with s = Õ��d
✏

�

, then

f

�

wc

[g]

�� f

�

w?
�  �

✏
g + �

2

✏

2

�

f(w?), (9)

where � =
kXk2

2

kXk2
2

+n�
 1. In Figure 4(a) we plot g against the ratio

f(wc

[1]

) � f(w?)

f(wc

[g]) � f(w?)
. (10)
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Model Averaging to Reduce Variance 




Model Averaging


•  Independently	draw	​𝐒↓1 , ⋯, ​𝐒↓𝑔 .	
• Compute	the	sketched	solu@ons	 ​𝐰↓1↑s , ⋯, ​𝐰↓𝑔↑s .	
• Model	averaging:	​𝐰↑s = ​1/𝑔 ∑𝑖=1↑𝑔▒​𝐰↓𝑖↑s  .	



Connection to Bagging


• Bagging	(bootstrap	aggrega@on)	was	proposed	by	Breiman	in	1996	for	
reducing	the	variance	of	the	decision	tree.	
• Bagging	originates	in	decision	tree	methods,	but	it	can	be	used	with	
many	machine	learning	models.	
•  For	ridge	regression,	uniform	sampling	with	model	averaging	is	exactly	
bagging.	
• Our	approach	is	not	limited	to	uniform	sampling.	Random	projec@ons	
and	non-uniform	sampling	outperform	uniform	sampling.	



Optimization Perspective


•  For	sufficiently	large	𝑠,		
​𝑓(​𝐰↓1↑s )−𝑓(​𝐰↑⋆ )/𝑓(​𝐰↑⋆ ) ≤𝜖				holds	w.h.p.	

• Using	the	same	sketching	distribu@on	and	𝑠,	
​𝑓(​𝐰↑s )−𝑓(​𝐰↑⋆ )/𝑓(​𝐰↑⋆ ) ≤ ​𝜖/𝑔 + ​𝜖↑2 				holds	
w.h.p.	

Without	model	averaging 

With	model	averaging 



Statistical Perspective


•  For	sufficiently	large	𝑠,		the	following	hold	w.h.p.:	
​bias(​𝐰↑s )/bias(​𝐰↑⋆ ) ≤1+𝜖        and          ​var(​

𝐰↑s )/var(​𝐰↑⋆ )  ≤ ​𝑛/𝑠  (1+𝜖).	

•  Using	the	same	sketching	distribu@on	and	𝑠,	the	
following	hold	w.h.p.:	
​bias(​𝐰↑s )/bias(​𝐰↑⋆ ) ≤1+𝜖        and          ​var(​𝐰↑s )/
var(​𝐰↑⋆ )  ≲ ​𝑛/𝑠 ​(​1/√⁠𝑔  +𝜖)↑𝟐 	
	

Without	model	averaging 

With	model	averaging 



Empirical variance reduction


•  If	𝑠	is	large	compared	to	𝑑	and	𝑔	is	larger	than	​𝑛/𝑠 ,	then	var(​
𝐰↑s )<var(​𝐰↑⋆ ).	
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Experiments	on	synthe@c	data.	
•  𝑛= ​10↑5 ,	𝑑=500,	𝜅(​𝑿↑𝑇 𝑿)= ​10↑12 .	
•  Sketch	size	is	𝑠=5000=​𝑛/20 .	
•  Regulariza@on	parameter	𝛾= ​10↑−6 .	
•  As	𝑔	exceeds	 ​𝑛/𝑠 =20,	var(​𝐰↑s )	can	be	smaller	than	

var(​𝐰↑⋆ ).	



Thank You!
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