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Kernel Ridge Regression

* Given dataset {(xJ/,y4/ ) }Ni=1Tn and kernel function x(xJ1 xJ2 ),
the problem is to solve

min—a€ER 772 [[Ka—-Y//J272 + AaT7 Ka

e Optimal solution:
al~= (K+AIin )T—1Y

* For large 7 (i.e. 7=1076 ), K does not even fit in memory



Iterative Methods

e Since solution doesn’t fit in memory, turn to iterative methods
* Classical methods: Conjugate-Gradient, and Gauss-Siedel

* We consider randomized block GS (block coordinate descent) for
solving positive-definite systems of the form

Aa=y
* Given a current iterate
(adie+1)J] =(adk)d] —AJ]] T-1 (Aadi —y)J]



Sampling in Block GS

Two reasonable schemes, given a blocksize p:

* Fixed Partition: Divide [ 7] into blocks ]J{1,...,JY7/» blocks ahead of
time. During the iterates, randomly choose a block J{zl4 where ¢4

~Unif({1,...n/p }).

 Random coordinates: At each iteration, choose uniformly from the

set {J€2T[n]: [|[=p}



Sampling in Block GS

Fixed partitioning is preferable from a systems perspective (cache
locality). Random coordinates suffer from slower memory accesses.

Why use random coordinates?

A simple example where the sampling makes a large difference: take

Al =1+ B/n111T
Try GS with 72=5000, =500,5=1000.
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Convergence of Randomized GS

To understand why the behavior differs, look at the theory of
randomized GS

Theorem. (Gower and Richtarik, 16)

For all /=0,
E/ladk —ad* [[LA <(1—w)Ti/2 [Jad0 —ad* [[JA,

where uy=Admin (E/PJAT1/2 S ]). Here, the randomized column
selection matrix S depends on the choice of sampling scheme.




Sampling in Block GS

For our example

AlS =1+ B/n111T,
wipart=p/n+Bp

wlrand =u¢p57121:£ é—lg— 1/n—1pp/

As —oo, udpart -1/ whereas prand - p/n. This gap is arbitrarily
large.



Sampling Tradeoffs

» Systems Perspective: fixed partition sampling is preferable. Can
cache blocks ahead of time, replicate across nodes, etc. Locality is
good for performance.

* Optimization perspective: random coordinates is preferable. Each
iteration of GS will make more progress. Locality is bad for
optimization.



What about acceleration?

Add a Nesterov momentum step to the iterates.

* Does the same sampling phenomenon occur with acceleration?
* Does this provide the \/u behavior we expect?

(Assuming the acceleration parameters are carefully chosen)



Prior State of Theory

The behavior of accelerated fixed-partition sampling is understood

Theorem. (Nesterov and Stich, 16)

For all #=0, accelerated block GS with fixed-partition sampling satisfies
E/ladk —adx [[IA S(1—Vp/nwipart )Tk/2 [Jad0 —ad* [|IA,

where udpart=Admin (E/PJAT1/2 S ]). Here, the randomized
column selection matrix S corresponds to fixed-partition sampling.

Thus fixed-partition sampling loses a factor of \/p/n over the ideal
Nesterov rate.




Main Result

Theorem.

For all #£=0, accelerated block GS with any (non-degenerate) sampling
scheme satisfies

E/ladk —ads [[NA S(1—2)T4/2 [lad0 —adx [JIA .

Here r=\/u/v , Where 1 is as before and v is a new quantity which
behaves roughly like 72/p.

We prove this rate is sharp—there exists a starting point which
matches the rate up to constants.




Corollaries

* For fixed partition sampling, we can show that v=7/p, recovering
Nesterov and Stich’s earlier result. Combined with the sharpness of
the rate, this proves the \/,b/n loss over the ideal rate is real for the
fixed-partition scheme.

* For random coordinate sampling, we can prove the weaker claim

v<n/p max—/] [=p
max—Z/€] Adil /Admin

If all the size ) principal(éJﬂMatrices of A are sufficiently well-
conditioned, v=n/p.



Experiment: Accuracy vs Iteration

CIFAR-10 KRR, n=250k, p=10k
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Experiment: Accuracy vs Time
CIFAR-10 KRR, n=250k, p=10k
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Overdetermined Ridge Regression

min-w {f(W)=1/n [[Xw-y/[[L2T2 +y[w/[[{2T2 } ..
Applications:

e Basic ML

5 * |RLS for ¢s2-penalized GLMs
* Building block in general
. 2 optimizers
min LSRN 1] + ym §
W o n 2 Two Perspectives:
\_'_I

 (Optimization) Deterministic X, y
e (Statistical) Deterministic X,
nxd randomy



Ridge Regression

min-w {f(W)=1/n [Xw—y[[J2T2 +y[w[[J2T2 }

min

\_'_I

nxd

2
/I
2

» Efficient and approximate solution?
* Use only part of the data?




Ridge Regression

min-w {f(W)=1/n [Xw—y[[J2T2 +y[w[[J2T2 }

2
/I
2

Matrix Sketching:

* Random selection




Approximate Ridge Regression

min-w {f(W)=1/n [Xw—y[[J2T2 +y[w[[J2T2 }

min l

W n

s: sketch size

-]

4 2
+ |l
, >

Optimization Perspective

e Sketched solution: wTs

. F(WTs )< (1+E)min—w f(W)




Approximate Ridge Regression

min-w {f(W)=1/n [Xw—y[[J2T2 +y[w[[J2T2 }

min _—

4 2
+ |l
, >

Statistical Perspective

* Bias [XwT*x —[EXw s
/42
< Variance — E/Xwls —EXwTs

114212
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sketching

Matrix Sketching

ST7X

S

* We consider only efficient sketching
procedures
* Time cost is o(72ds) — lower than
multiplication.
* Examples:
* Leverage score sampling: J(ndlogn ) time
« SRHT: O(ndlogs ) time



Sketched Ridge Regression

e Sketched solution:
wls =argmin+—w {1/72 |[STTXw—-ST7y[[L2T2 +y|wW/[[I272 }

= (X17SST7X+nAdd )T+ (XITSSITy)

* Time: O(sdT2 )+7s
o 7Uls isthe cost of sketching ST7°X
 E.g. 7Us=0(ndlogs) for SRHT.
* E.g. 7Us=0(ndlogn ) for leverage score sampling.

* Versus the time for the full RR problem: O0(nd72 )



Results: Optimization Perspective



Optimization Perspective

For the SketChing methods « XeRT7nxd: the design matrix
* y:theregularization parameter

* SRHT or leverage sampling with s=0 (fd/€ ), o = IXIN212 Jyt K212 €(0, 1]
* uniform sampling with s=0(u pdlogd /€ ), * 4E[1,n/d | the row coherence of X

JWTs )<(1+4+¢) f(WTx ) holds w.p. 0.9.



Optimization Perspective

For the SketChing methods « XeRT7nxd: the design matrix
* y:theregularization parameter

* SRHT or leverage sampling with s=0 (fd/€ ), o = IXIN212 Jyt K212 €(0, 1]
* uniform sampling with s=0(u pdlogd /€ ), * 4E[1,n/d | the row coherence of X

JWTs )<(1+4+¢) f(WTx ) holds w.p. 0.9.

1/n[[Xwls —Xwix [[U2T2 < ef(WTx).
—>



Results: Statistical Perspective



Statistical Model

* XeER 72X d : fixed design matrix
e wl0 eERTd: the true and unknown model

* y=XwJ/0 +8: observed response vector
e 01, -+, 0dn are random noise

« E[6]=0 and E[8877 |=¢T2 Ln



Bias-Variance Decomposition

* Risk: RWwW)=1/nE/Xw—XwJ0 [[{2T2

e [Eis taken w.r.t. the random noise 8.



Bias-Variance Decomposition

* Risk: RWwW)=1/nE/Xw—XwJ0 [[{2T2
* E is taken w.r.t. the random noise 8.
* Risk measures prediction error.



Bias-Variance Decomposition

* Risk: RWwW)=1/nE/Xw—XwJ0 [[{2T2
* R(w)=bias 72 (w)+var(w)



Bias-Variance Decomposition

* Risk: RWwW)=1/nE/Xw—XwJ0 [[{2T2
* R(w)=bias 72 (w)+var(w)

o [ bias(wi )=V [|(E12 +nAdd )T-1 EVTTWI0 [/i2,
pLma { e var(Wlx )=§¢712 /n [|dd +ny2T-2 )T—-1 [[I272,

Solution

* bias(wW7s )=pvn |[(EUTTSSTTUZ+n)14d )T+ EVT7WI0 /42,
Sketched{ e var(WTls )=¢&T12 /n [[(OTT SSTTU+nyZT-2 )T UTTSSTT [[4272,

Solution

« Here X=UXV 77 is the SVD.



Statistical Perspective

For the sketching methods

* SRHT or leverage sampling with s=0 (d/eT2 ); XeRTnxd: the design matrix
 w€[l,n/d ] the row coherence of X

* uniform sampling with s=0(u dlogd /€72 ),

the following hold w.p. 0.9:

1—e<bias(wTs )/bias(wWlx ) <1+¢
Good!

(1—e)n/s <var(wWls ) var(Wwlx ) < (1+¢)n/s.

Bad! Because m»s.



Statistical Perspective

For the sketching methods

* SRHT or leverage sampling with s=0 (d/eT2 ); XeRTnxd: the design matrix
 w€[l,n/d ] the row coherence of X

* uniform sampling with s=0(u dlogd /€72 ),

the following hold w.p. 0.9:

1—e<bias(wTs )/bias(wWlx ) <1+¢

If y is noisy

(1—€e)n/s <var(w'ls )var(WTlx ) < (1+ ¢gjrg)/s'riance dominates bias
= RWTs )»>R(WT*).




Consequence for selection of
regularization
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Model Averaging to Reduce Variance



Model Averaging

* Independently draw 81, ---,Sg.
* Compute the sketched solutions wdlT7s, -, wlgTs .



Connection to Bagging

* Bagging (bootstrap aggregation) was proposed by Breiman in 1996 for
reducing the variance of the decision tree.

* Bagging originates in decision tree methods, but it can be used with
many machine learning models.

* For ridge regression, uniform sampling with model averaging is exactly
bagging.

* Qur approach is not limited to uniform sampling. Random projections
and non-uniform sampling outperform uniform sampling.



Optimization Perspective

* For sufficiently large s,

J(WilTs )—/ﬂff* )/f(WTx ) <e holds w.h.p.

* Using the same sketching distribution and s,

JWTs )—f(WIx ) LEWT* ) <e/g +eT2
w.h.p.

holds

Without model averaging

With model averaging




Statistical Perspective

* For sufficiently large s, the following hold w.h.p.:

bias(WTs )/bias(wWix ) <1+¢

wls ) var(Wlx ) < n/s (1+€).

and

var(

* Using the same sketching distribution and s, the

following hold w.h.p.:

bias(WTs )/bias(wT* ) <1+¢ and
var(wWhx ) s n/s(1/Vg +¢)12

var(w

Is)/

Without model averaging

With model averaging




Empirical variance reduction

* If sis large compared to Zand g is larger than 72/s, then var(
wls )<var(w'x ).

107

Experiments on synthetic data.

« n=1075, d=500, x(X17 X)=10712.

e Sketch size is s=5000=7,20.

* Regularization parameter y=107—6.

* As gexceeds n/s=20, var(w?s ) can be smaller than

var(w’x ).

|
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T

Variance
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Thank You!
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