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General setup
We have high-dimensional data, e.g.

I Machine learning. Database of e-mails featurized as
high-dimensional vectors; we want to learn a spam classifier.

I Bioinformatics. Motif discovery in DNA sequences.

I Computational geometry. Fingerprint matching in a large
database.

I Data mining. Clustering similar featurized objects.

I Compression and fast image acquisition. Compressed sensing.

I Large-scale linear algebra. Low-rank approximation or
regression on a huge matrix.

Can we reduce dimensionality of the data in a pre-processing step,
in a way that doesn’t disrupt downstream applications?

I Faster running times (lower dimension = faster algorithms)
I Save space
I Minimize communication for distributed applications
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Random projection method: pick some random linear map,
x 7→ Πx , and apply Π to input as a pre-processing step



Other dimensionality
reduction methods?

I Principal component analysis (PCA)

I Kernel PCA

I Multidimensional scaling

I ISOMAP

I Hessian Eigenmaps

I . . .

Random projection is orthogonal to, and complements, other
dimensionality reduction methods. Its purpose is to make other
algorithms more efficient, not be the data analysis algorithm.
(will say more soon)
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Cornerstone dim. reduction/random projections result

JL lemma [Johnson, Lindenstrauss ’84]

For every X ⊂ `2 of size n, there is an embedding f : X → `m2 for
m = O(ε−2 log n) with distortion 1 + ε. That is, for each x , y ∈ X ,

(1− ε)‖x − y‖2
2 ≤ ‖f (x)− f (y)‖2

2 ≤ (1 + ε)‖x − y‖2
2

Summary: For any n vectors in arbitrary dimension, can map to
O(log n) dim. while approximately preserving Euclidean geometry.
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How to prove the JL lemma

Distributional JL (DJL) lemma

Lemma (DJL lemma [Johnson, Lindenstrauss ’84])

For any 0 < ε, δ < 1/2 and d ≥ 1 there exists a distribution Dε,δ
on Rm×d for m = O(ε−2 log(1/δ)) such that for any z ∈ Rd

P
Π∼Dε,δ

(
‖Πz‖2

2 /∈ [(1− ε)‖z‖2
2, (1 + ε)‖z‖2

2]
)
< δ.

Proof of JL: Set δ = 1/n2 in DJL and z as the difference vector of
some pair of points. Union bound over the

(n
2

)
pairs. Thus the

map f : X → `m2 can be linear: f (x) = Πx .

First proof of DJL in [JL’84] took Dε,δ as (scaled) orthogonal
projection onto a random m-dimensional subspace.
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Some natural questions
(this talk: and some recent answers)

I What about other, non-Euclidean norms?

I How fast can we apply the map x 7→ Πx?

I What is the optimal target dimension m for DJL?

I What is the optimal target dimension m for JL?

I Isn’t storing the random m × d matrix Π expensive?

I What can we get for specific applications and instances?
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Non-Euclidean norms

(Informal) Theorem [Johnson-Naor’10]. Any norm enjoying
JL-type dimensionality reduction must be “almost” Euclidean.

(Formal) Theorem [Johnson-Naor’10]. Suppose Z is a normed
space satisfying the following property: for every n points
x1, . . . , xn ∈ Z there is a linear subspace F ⊂ Z of dimension
O(log n) and a linear map L : Z → F such that
‖xi − xj‖ ≤ ‖L(xi )− L(xj)‖ ≤ O(1) · ‖xi − xj‖ for all 1 ≤ i , j ≤ n.
Then every k-dimensional subspace of Z embeds into Euclidean

space with distortion 22O(log∗ k)
.

A lower bound is also shown, that the 22O(log∗ k)
term must be ω(1)

(specifically 2Ω(α(k))).
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The DJL distribution over Π

Older proofs

I [Johnson-Lindenstrauss, 1984], [Frankl-Maehara, 1988]:
Random rotation, then projection onto first m coordinates.

I [Indyk-Motwani, 1998], [Dasgupta-Gupta, 2003]:
Random matrix with independent Gaussian entries.

I [Achlioptas, 2001]: Independent ±1 entries.

I [Clarkson-Woodruff, 2009]:
O(log(1/δ))-wise independent ±1 entries.

I [Arriaga-Vempala, 1999], [Matousek, 2008]:
Independent entries having mean 0, variance 1/m, and
subGaussian tails

Downside: Performing embedding is dense matrix-vector
multiplication, O(m · ‖x‖0) time
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Fast JL Transforms

I [Ailon-Chazelle, 2006]: x 7→ PHDx , O(d log d + m3) time

P is a random sparse matrix, H is Hadamard, D has random
±1 on diagonal

I Several follow-up works with technical improvements:
[Ailon-Liberty’08], [Ailon-Liberty’11], [Krahmer-Ward’11],
[Rudelson-Vershynin’08],
[Cheraghchi-Guruswami-Velingker’13], [N.-Price-Wootters’14],
[Bourgain’14], [Haviv-Regev’16]

Downside: Slow to embed sparse vectors: running time is
Ω(min{m · ‖x‖0, d log d}).
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CountSketch [Charikar-Chen-FarachColton’02]

Π = 1√
s
×

±1
w 0

0

0
±1
0

0
±1 m
0

0
0
±1

I partition m rows into s blocks of size w = m
s each

I each column has exactly one ±1√
s

per block in random location

x

x



CountSketch [Charikar-Chen-FarachColton’02]

Π = 1√
s
×

±1
w 0

0

0
±1
0

0
±1 m
0

0
0
±1

I Note: can map x 7→ Πx in time O(s · ‖x‖0).
I [Kane-N.’14] shows m = O(ε−2 log n), s = O(εm) suffices.

[N.-Nguy˜̂en’13] shows for this m, such s is almost necessary.
I See also [Bourgain-Dirksen-N.’15].



Sparse JL transforms

s = #non-zero entries per column in embedding matrix
(so embedding time is s · ‖x‖0)

reference value of s type

[JL84], [FM88], [IM98], . . . m ≈ 4ε−2 log(1/δ) dense

[Achlioptas01] m/3 sparse
Bernoulli

[WDALS09] no proof hashing

[DKS10] Õ(ε−1 log3(1/δ)) hashing

[KN10a]∗, [BOR10]∗ Õ(ε−1 log2(1/δ)) ”

[KN14] O(ε−1 log(1/δ)) CountSketch

∗ see also recent improvements by [Dahlgaard-Knudsen-Thorup’17],
[Freksen-Kamma-Larsen’18].
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Distributional JL (DJL) lemma

Lemma (DJL lemma [Johnson, Lindenstrauss ’84])

For any 0 < ε, δ < 1/2 and d ≥ 1 there exists a distribution Dε,δ
on Rm×d for m = O(ε−2 log(1/δ)) such that for any u ∈ Sd−1

P
Π∼Dε,δ

(
‖Πu‖2

2 /∈ [1− ε, 1 + ε]
)
< δ.

Theorem (Jayram-Woodruff, 2011; Kane-Meka-N., 2011)
For DJL, m = min{d ,Θ(ε−2 log(1/δ))} is optimal.
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DJL lower bound proof idea [Kane-Meka-N. 2011]

Suppose Dε,δ is a good DJL distribution on Rm×d .

∀x ∈ Sd−1 P
Π∼Dε,δ

(|‖Πx‖2
2 − 1| > ε) < δ

=⇒ P
x∼F

P
Π∼Dε,δ

(|‖Πx‖2
2 − 1| > ε) < δ

=⇒ P
Π∼Dε,δ

P
x∼F

(|‖Πx‖2
2 − 1| > ε) < δ

=⇒∃Π ∈ Rm×d P
x∼F

(|‖Πx‖2
2 − 1| > ε) < δ

(easy direction of “Yao’s minimax principle”)

Then show that if F is the uniform distribution on the sphere and
m < d/2, then the probability any fixed Π ∈ Rm×d fails to preserve
x is exp(−O(ε2m + 1)) =⇒ m = Ω(ε−2 log(1/δ)) to succeed.
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Some natural questions
(this talk: and some recent answers)

I What about other, non-Euclidean norms?

I How fast can we apply the map x 7→ Πx?

I What is the optimal target dimension m for DJL?

I What is the optimal target dimension m for JL?

I Isn’t storing the random m × d matrix Π expensive?

I What can we get for specific applications and instances?



JL lower bound

Theorem ([Larsen, Nelson ’17])

For any integers d , n ≥ 2 and any 1
(min{n,d})0.4999 < ε < 1, there

exists a set X ⊂ `d2 , |X | = n, such that any embedding f : X → `m2
with distortion at most 1 + ε must have

m = Ω(ε−2 log n)

I Can always achieve m = d : f is the identity map.

I Can always achieve m = n − 1: translate so one vector is 0.
Then all vectors live in (n − 1)-dimensional subspace.

I So can only hope JL optimal for ε−2 log n ≤ min{n, d},
can view theorem assumption as ε−2 log n� min{n, d}0.999.
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Lower bound techniques
over time



Lower bounds over time

I Volume argument. m = Ω(log n) [Johnson, Lindenstrauss ’84]

I Incoherence + tensor trick. m = Ω( 1
ε2

log n
log(1/ε) ) [Alon ’03]

I Net argument + probabilistic method. m = Ω( 1
ε2 log n)

(only against linear maps f (x) = Πx) [Larsen, Nelson ’16]

I Encoding argument. m = Ω( 1
ε2 log n) [Larsen, Nelson ’17]
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Encoding argument.
[Larsen, Nelson ’17]



JL is optimal even against non-linear maps

We define a large collection X of n-sized sets X ⊂ Rd s.t. if all
X ∈ X can be embedded into dimension ≤ 10−10 · ε−2 log2 n, then
there is an encoding of elements of X into < log2 |X | bits (i.e. an
injection from X to {0, 1}t for t < log2 |X |). Contradiction.

Encoding procedure based on very simple metric entropy / convex
geometry argument.



JL is optimal even against non-linear maps

We define a large collection X of n-sized sets X ⊂ Rd s.t. if all
X ∈ X can be embedded into dimension ≤ 10−10 · ε−2 log2 n, then
there is an encoding of elements of X into < log2 |X | bits (i.e. an
injection from X to {0, 1}t for t < log2 |X |). Contradiction.

Encoding procedure based on very simple metric entropy / convex
geometry argument.



OPEN: later [Alon-Klartag’17] showed lower bound of
Ω(min{n, d , ε−2 log(ε2n)}) for full range of ε. Is there a matching
upper bound for ε→ 1/

√
n?
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Representing Π ∈ Rm×d space-efficiently

I [Achlioptas’01]: Πi ,j can be i.i.d. σi ,j/
√
m for σi ,j = ±1.

I [Clarkson-Woodruff’09]: in fact the σi ,j only need be
O(log(1/δ))-wise independent. Combined with
[Carter-Wegman’79], this implies Π can be stored using
O(log(1/δ) log(md)) = O(log(1/δ) log d) bits.

I [Kane-Meka-N.’11]: can construct Π as a product of
O(log log(1/δ) + log(1/ε)) matrices using growing amounts of
independence and gradually decreasing number of rows

Total number of bits:
O(log d + log(1/δ)(log log(1/δ) + log(1/ε))).

OPEN: O(log d + log(1/δ))?
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Some natural questions
(this talk: and some recent answers)

I What about other, non-Euclidean norms?

I How fast can we apply the map x 7→ Πx?

I What is the optimal target dimension m for DJL?

I What is the optimal target dimension m for JL?

I Isn’t storing the random m × d matrix Π expensive?

I What can we get for specific applications and instances?



Application-specific



k-means: given k and x1, . . . , xn ∈ Rd , find y1, . . . , yk minimizing

n∑
i=1

min
1≤j≤k

‖xi − yj‖2
2

Clustering induces a k-partition P on [n], so want to find best
P = (P1, . . . ,Pk). For fixed P, best choice of yj is centroid of Pj .

cost(P) =
k∑

j=1

∑
i∈Pj

‖xi −
∑

t∈Pj
xt

|Pj |
‖2

2

=
k∑

j=1

1

|Pj |
∑

i<i ′∈Pj

‖xi − xi ′‖2
2.

Thus JL embedding f preserves cost(P) for all P, so can optimize
over f (X ) (X = {xi}ni=1). Can reduce to dimension O(ε−2 log n).
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Better dimension reduction for k-means

[Boutsidis-Zouzias-Mahoney-Drineas’11]: can reformulate k-means as
a constrained low-rank approximation problem

1

2

3

4
Partition P ,

XP =


1√
2

0 0
1√
2

0 0

0 1 0
0 0 1

 ,XPXT
P =


1
2

1
2 0 0

1
2

1
2 0 0

0 0 1 0
0 0 0 1



XPX
T
P is a rank-k orthogonal projection, and if we put points as

rows of a matrix A, then XPX
T
PA maps each point (i.e. each row

of A) to the centroid of its partition.

cost(P) = ‖A− XPX
T
PA‖2

F

Q = {XPXT
P : P a k-partition}, constrained low-rank approx!:

want Qopt = argminQ∈Q ‖A− QA‖2
F ,
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Better dimension reduction for k-means

Q = {XPXT
P : P a k-partition}, want

Qopt = argmin
Q∈Q

‖(I − Q)A‖2
F .

Dimensionality reduction for optimization:

Q̃opt = argmin
Q∈Q

‖(I − Q)AΠT‖2
F .

To optimize up to 1 + ε, suffices for sketching matrix Π to only
have O(k/ε2) rows [Cohen-Elder-Musco-Musco-Persu’15] (see also [Cohen-N.-Woodruff’16]).

Evidence “k” may be log k: [CEMMP’15] shows O(log k)
dimensions suffice for O(1)-approximation.
(just can’t get down to 1 + ε).
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Instance-wise bounds



Dimensionality reduction beyond worst-case analysis

Suppose we have T ⊂ Sd−1 and want matrix Π ∈ Rm×d such that

∀x ∈ T , (1− ε)‖x‖2
2 ≤ ‖Πx‖2

2 ≤ (1 + ε)‖x‖2
2.

Equivalent to
sup
x∈T
|‖Πx‖2

2 − 1| < ε

I JL lemma’84: m & ε−2 log |T | suffices.

I Gordon’88: m & ε−2(w2(T ) + 1) suffices, where w(T ) is the
Gaussian mean width of T . w(T ) := E supx∈T 〈g , x〉.
Note: w(T ) .

√
log |T | always by union bound (tight if T

vectors are orthogonal). Can be much smaller if gain vectors
are close, since | 〈g , x〉 − 〈g , y〉 | = | 〈g , x − y〉 |.

I Gordon showed result for Π having i.i.d. gaussian entries. But
what about other Π?
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Dimensionality reduction beyond worst-case analysis

Using Π other than i.i.d. gaussian entries:

I [Klartag-Mendelson’05], [Mendelson-Pajor-TomczakJaegermann’07],
[Dirksen’16] i.i.d. subgaussian entries suffice (e.g. ±1/

√
m).

I [Bourgain-Dirksen-N.’15] Sparse JL Transform works with a similar
number of rows, with low sparsity, under technical conditions concerning
the point set to be reduced. Qualitatively recovers all known results for
applications of sparse JL to specific domains, like subspace embeddings
(next slide) up to log d factors.

I [Oymak-Recht-Soltanokotabi’17] Fast JL Transform of Ailon-Chazelle
works with similar number of rows, up to log d factors.
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More dimensionality
reduction: large matrices



Sketching for large matrix problems

A =

—— d ——

n

Subspace embeddings [Sarlós’06]

Following works by Drineas, Kannan, Mahoney, Mutukrishnan,

I Subspace embedding: Π is an ε-subspace embedding
for a linear subspace E if ∀x ∈ E , ‖Πx‖2

2 = (1± ε)‖x‖2
2

I Given A,B with many rows n, approximate ATB
by (ΠA)TΠB

I Given X , β, approximate least squares:
β̃LS = argminβ ‖ΠXβ − Πy‖2

I Also applications to clustering [BZMD’11], [CEMMP’15], [CNW’16],

PCA, and many other problems; see

[Halko-Martinsson-Trop’11], [Mahoney’11], [Woodruff’14]

What Π to use?
E.g. regression want to compute ΠX quickly.
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CountSketch [Charikar-Chen-FarachColton’02] (it’s me again)

Π = 1√
s
×

±1
w 0

0

0
±1
0

0
±1 m
0

0
0
±1

I Analyzed for approx. matrix mult, then regression and PCA, in
[Kane-N.’12], [Clarkson-Woodruff’13], [Meng-Mahoney’13], [N.-Nguy˜̂en’13], [BDN’15], [Cohen’16]

I For regression/PCA, m = O(rank(X )/ε2), s = 1, or
m = Õ(rank(X )/ε2), s = polylog(rank(X ))/ε suffice

I Leads to algorithms with runtime ≈ the sparsity of X
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m = Õ(rank(X )/ε2), s = polylog(rank(X ))/ε suffice

I Leads to algorithms with runtime ≈ the sparsity of X



CountSketch [Charikar-Chen-FarachColton’02] (it’s me again)

Π = 1√
s
×

±1
w 0

0

0
±1
0

0
±1 m
0

0
0
±1

I Analyzed for approx. matrix mult, then regression and PCA, in
[Kane-N.’12], [Clarkson-Woodruff’13], [Meng-Mahoney’13], [N.-Nguy˜̂en’13], [BDN’15], [Cohen’16]

I For regression/PCA, m = O(rank(X )/ε2), s = 1, or
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Open problems

I Instance-wise optimality for `2 dimensionality reduction?

What’s the right m in terms of X itself? Bicriteria results?

I JL map that can be applied to x in time Õ(m + ‖x‖0)?

‖ · ‖0 denotes support size

I Explicit DJL distribution with seed length O(log d
δ )?

I Rasmus Pagh: Las Vegas algorithm for computing a JL map
for set of n points faster than repeated random projections
then checking?


