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Background




Seismic inversion

Vibrator Truck

Sensors

Seismic Waves
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The velocity under the ground/sea surface (i.e. velocity/bulk

modulus/impedance in the wave equation)

Waveforms from receivers
(i.e. wave equation solution

on the boundary




Full Waveform Inversion (FWI): a PDE-constrained optimization
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m(x) 25 — Au(x,t) = s(x, 1)
u(x,0) =0

di(x,0) =0

Velocity L
Model T

m* = argmin \(f(m), g).

m

+ y Is the objective function;
Final f = Ru Is the simulated data;

Velocity

Model g Is the reference/true data.




Limitation of L? norm — Many local minima

L2 difference between T and 1(t-5) W2 distince between f and f(t-s)
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Optimal transport

(amount m-:::nved) (distance moved)

Synthetic data f (left) and observed data g (right) 10




Optimal transport: the Wasserstein distance

Finally, for general functions f and g, the Wasserstein distance iIs

min Z distance moved x amount moved
Allthemap T

All movements of T

Function f and g sharing the same mass by normalization

Different choice of distance: W; (|x —y|)and W, (|x — y|*)
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Quadratic Wasserstein Distance (Earth Mover’s Distance)

Definition of the Wasserstein distance
Forf: X —-R*", g:Y — R, the distance can be formulated as

Wp(f,g) = (TiqL [ix- T(x)ﬁ’f(x)dxf (1)

M 1s the set of all maps that rearrange the distribution f into g.

Quadratic Wasserstein distance: |

Wi(f.9) = inf / X — TEx)[* f(x) dx (2)
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Properties of W,




Convexity: motivation

The shift and dilation are typical effects from variations in velocity c. For

example:
( Py 20U
W . C W. X - O*t - O.
{u=0, ‘;f’—}—lt"-_-o. X>0,t=0,
LU = f(t), X=0,{> 0

The solution to the equation is u(c; x, t) = f(t — x/c).
For fixed x, variation in c¢ relates shifts in the signal.
For fixed t, variation in ¢ generates the dilation in f as a function of x.

The change in amplitude may originate from measurement errors and variations
In strength of reflecting surfaces.
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Convexity: translation and dilation (for any dimension)

Theorem (Convexity of translation and dilation)
W:(f,g) Is convex with respect to translation, s and dilation, A:

W2(f,9)[s.\], f(x)=A\g(M—5s), A>0, sxeR

+ The dilation Ax can be generalized to Ax, where A is a symmetric positive
definite matrix. Then the convexity' Is In terms of the eigenvalues.

+ The proof is based on c-cyclic monotonicity of the transference plan I
Foranym e N*, (x;,y;) € ',1 < m, and any permutation o:

Zc(x; Zc i = Yo (3)

where Xo = X, and Yo = Y.
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W,: Insensitivity to noise
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1D Optimal Transport approach




W, for 1D data

1D Optimal transport (trace by trace)
The explicit formulation for the 1D Wasserstein metric 1s:

/ F(x) — 67'(x) 2dx. (4)

where F(t) - ‘lr f( )Jd7 and G(t) = ‘l' . d(T)ar. f and g are normalized signals
that have positivity and conservation of mass. The optimal map is G ™' o F.

Get F~'in O(N) complexity. N is the total number of data points in time.

Data transformation
f ) normalize 3 ~ mtegmte In tlmp 0 _lguerse functmn e

very important!

[Yang et al., 2016] 18



The fundamental difference between L? and 1D optimal transport

Signal g (red) is a shift of Ricker wavelet f (blue).
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Data Normalization: Bridging the
Gap Between Seismic Signals and
Probability Densities




How to normalize? The squaring scaling

Why is It not working well in inversions?

Squarad signals , + Taking the squares boosts the
000¢ \ P . higher frequency of the signal
: : + Squaring the signals may lose the
”” / \/\ A \/\ | important phase information
” T (Refraction vs. Reflection)
Square of the data: f — f* and g — g’ (arrows + Not a one-to-one function; cannot
indicate transport) recover the original signal after

normalization



Inversion results




Marmousi model with L? norm

L2 inversion at iteration 296
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Data residual at iteration 296
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Marmousi model with W, norm

W2 inversion at iteration 281 Data residual at iteration 281
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Reflection dominated FWI: local
minima beyond cycle skipping




The difficulty of L> norm in Reflection FWI

True velocity Initial velocity
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The difficulty of L norm in Reflection FWI: local minima

Three velocity models share the same L? data misfit

L2 FWI using full gradient L2 FWI using subgradient Constructed veloclity
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The difficulty of L? norm in Reflection FWI

L2 inversion W2 inversion
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The difficulty of L? norm in Reflection FWI

Fourier transform of L2 adjoint source Fourier transform of W2 adjoint source
frequency (Hz) frequency (Hz)
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The difficulty of L? norm in Reflection FWI

L2 inversion W2 inversion
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The difficulty of L? norm in Reflection FWI

Fourier transform of L2 adjoint source Fourier transform of W2 adjoint source
frequency (Hz) frequency (Hz)
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The data gradient of W, norm in FWI

The corresponding Frechet derivative, I.e. the adjoint source term In the
backward propagation, has the following expression:

oW;(f,9) _ ( /'T“z(s 6-'(F(s) ) f(S)dS) a

Of ay  |y—r(s) (5)
[t — GT(F(t))|*dt.
The corresponding Fréchet derivative of L? norm:
OL5(f,9)
of -f—g (6)
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The difficulty of L? norm in Reflection FWI

Fourier transform of L2 adjoint source Fourier transform of W2 adjoint source
frequency (Hz) frequency (Hz)
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The data gradient of W, norm in FWI

The corresponding Frechet derivative, I.e. the adjoint source term In the
backward propagation, has the following expression:

oW;(f,9) _ ( /'T“z(s 6-'(F(s) ) f(S)dS) a

Of ay  |y—r(s) (5)
[t — GT(F(t))|*dt.
The corresponding Fréchet derivative of L? norm:
OL5(f,9)
of -f—g (6)
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Salt Inversion: 15 Hz Ricker

W2 final inversion result
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Velocity (km/s)

W, final inversion



Conclusion




Summary

Motivation
Consider the misfit globally (with an optimal map) instead of point-by-point (L?).

Ideal properties Synthetic examples

- Convexity; 2004 BP & Marmousi
* Insensitivity to noise, Field data examples
- Working for transmission, Collaboration with PGS, data from
refraction, reflection, etc. the North Sea
Future work

Data normalization; Adding regularization; Multi-parameter FWI (e.g. elastic wave
equation); Application to other fields, etc.
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