The Analysis and Application of Optimal Transport Related Misfit Functions in Seismic Imaging

Yunan Yang¹

July 13, 2018

¹The University of Texas at Austin, USA

Special thanks to:

Dr. Björn Engquist (supervisor)

Junzhe Sun (ExxonMobil), Lingyun Qiu (Petroleum Geo-Services, Inc) and Brittany Froese (NJIT)

Texas Consortium for Computational Seismology (TCCS) colleagues and sponsors

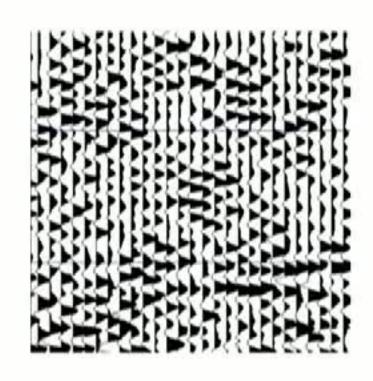
Petroleum Geo-Services Modeling and Inversion Group

Background

Seismic inversion



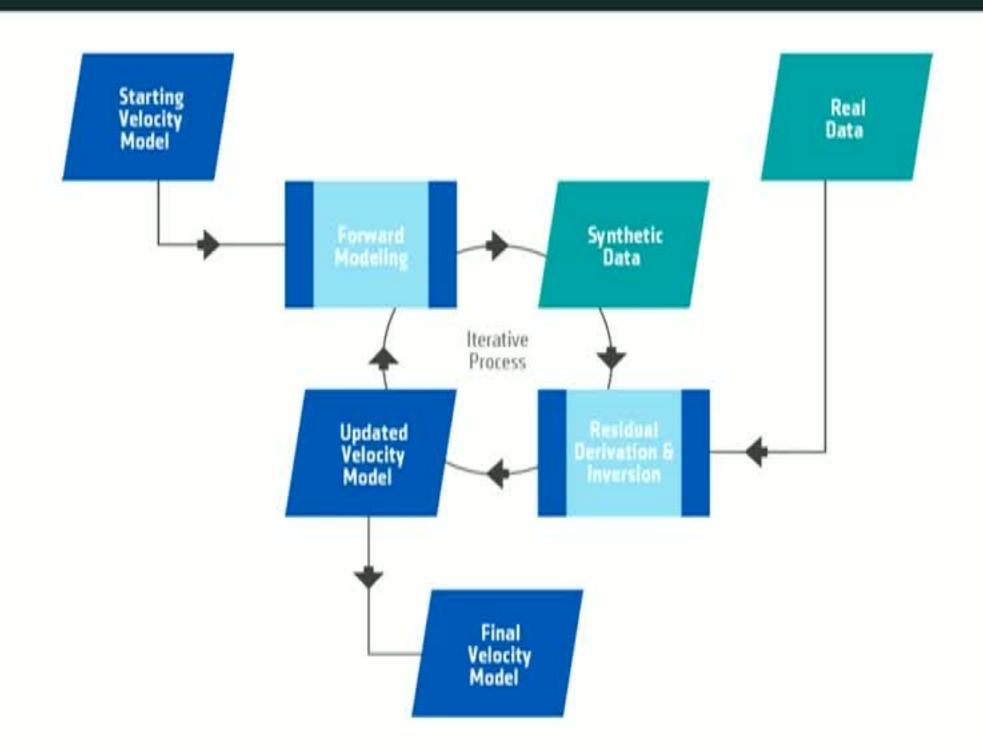
Seismic inversion



Waveforms from receivers (i.e. wave equation solution on the boundary)

The velocity under the ground/sea surface (i.e. velocity/bulk modulus/impedance in the wave equation)

Full Waveform Inversion (FWI): a PDE-constrained optimization



$$m(\mathbf{x}) \frac{\partial^2 u(\mathbf{x},t)}{\partial t^2} - \triangle u(\mathbf{x},t) = s(\mathbf{x},t)$$

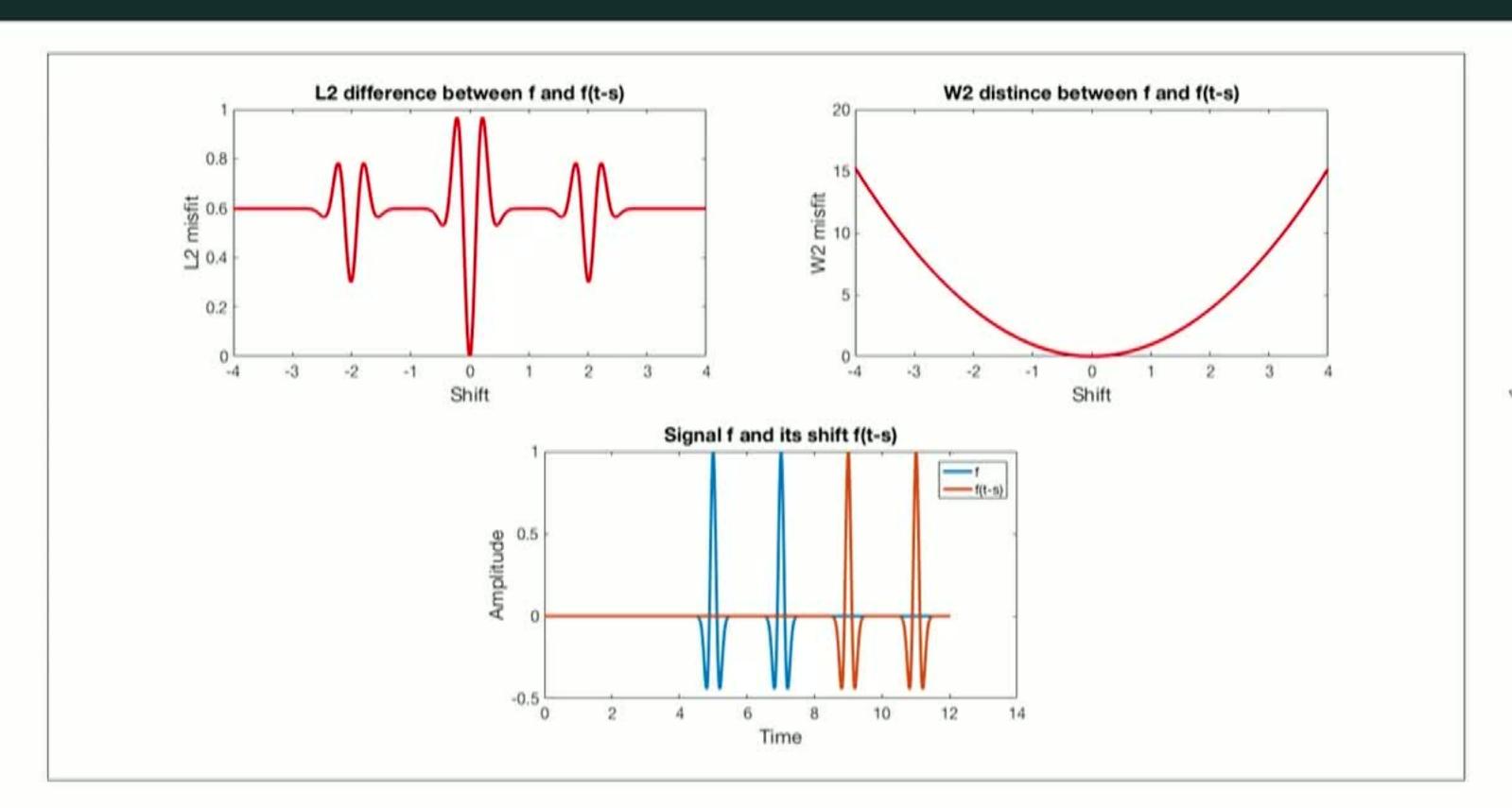
$$u(\mathbf{x},0) = 0$$

$$\frac{\partial u}{\partial t}(\mathbf{x},0) = 0$$

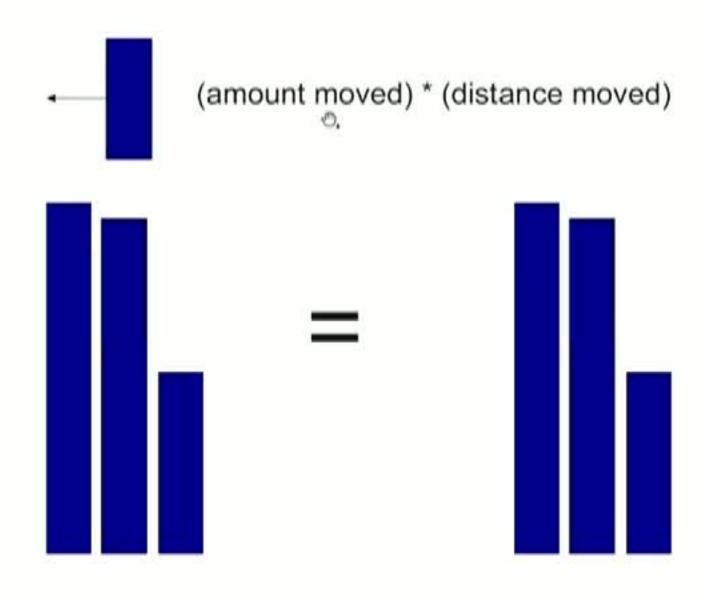
$$m^* = \underset{m}{\operatorname{argmin}} \chi(f(m), g),$$

 χ is the objective function; f = Ru is the simulated data; g is the reference/true data.

Limitation of L^2 norm — Many local minima



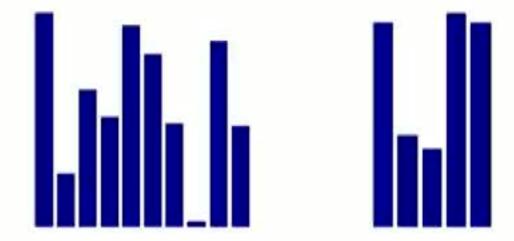
Optimal transport



Optimal transport: the Wasserstein distance

Finally, for general functions f and g, the Wasserstein distance is

$$\min_{\text{All the map } T} \left(\sum_{\text{All movements of } T} \text{distance moved} \times \text{amount moved} \right)$$



Function f and g sharing the same mass by normalization

Different choice of distance: $W_1(|x-y|)$ and $W_2(|x-y|^2)$

Quadratic Wasserstein Distance (Earth Mover's Distance)

Definition of the Wasserstein distance

For $f: X \to \mathbb{R}^+$, $g: Y \to \mathbb{R}^+$, the distance can be formulated as

$$W_p(f,g) = \left(\inf_{T \in \mathcal{M}} \int |x - T(x)|^p f(x) dx\right)^{\frac{1}{p}} \tag{1}$$

 \mathcal{M} is the set of all maps that rearrange the distribution f into g.

Quadratic Wasserstein distance: p = 2

$$W_2^2(f,g) = \inf_{T \in \mathcal{M}} \int_X |x - T(x)|^2 f(x) dx$$
 (2)

Properties of W_2

Convexity: motivation

The shift and dilation are typical effects from variations in velocity c. For example:

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}, & x > 0, t > 0, \\ u = 0, & \frac{\partial u}{\partial t} = 0, & x > 0, t = 0, \\ u = f(t), & x = 0, t > 0. \end{cases}$$

The solution to the equation is u(c; x, t) = f(t - x/c).

For fixed x, variation in c relates **shifts** in the signal.

For fixed t, variation in c generates the **dilation** in f as a function of x.

The change in amplitude may originate from measurement errors and variations in strength of reflecting surfaces.

Convexity: translation and dilation (for any dimension)

Theorem (Convexity of translation and dilation)

 $W_2^2(f,g)$ is convex with respect to translation, s and dilation, λ :

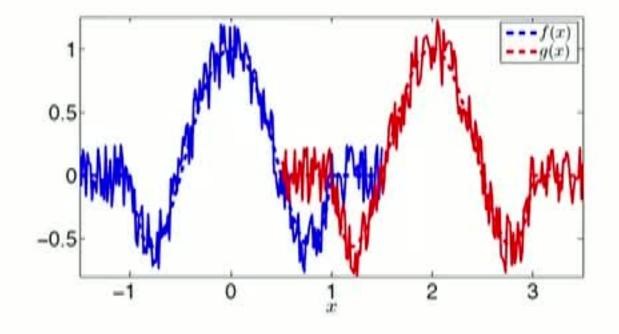
$$W_2^2(f,g)[s,\lambda], \quad f(x) = \lambda^d g(\lambda x - s), \quad \lambda > 0, \quad s,x \in \mathbb{R}^d$$

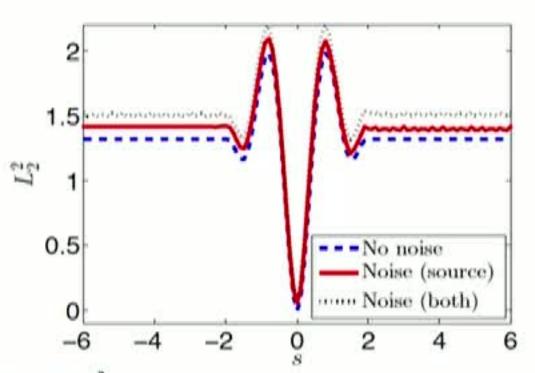
- The dilation λx can be generalized to Ax, where A is a symmetric positive definite matrix. Then the convexity is in terms of the eigenvalues.
- The proof is based on c-cyclic monotonicity of the transference plan Γ : For any $m \in \mathbb{N}^+$, $(x_i, y_i) \in \Gamma$, $1 \le i \le m$, and any permutation σ :

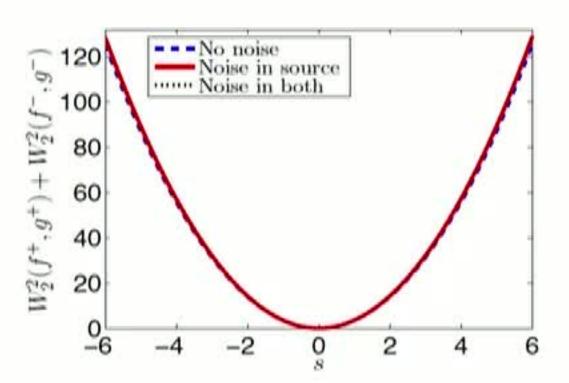
$$\sum_{i=1}^{m} c(x_i - y_i) \le \sum_{i=1}^{m} c(x_i - y_{\sigma(i)})$$
 (3)

where $x_0 \equiv x_m$ and $y_0 \equiv y_m$.

W_2 : Insensitivity to noise







[Engquist and Froese, 2014]

1D Optimal Transport approach

W_2 for 1D data

1D Optimal transport (trace by trace)

The explicit formulation for the 1D Wasserstein metric is:

$$W_2^2(f,g) = \int_0^1 |F^{-1}(x) - G^{-1}(x)|^2 dx. \tag{4}$$

where $F(t) = \int_{-\infty}^{t} \tilde{f}(\tau) d\tau$ and $G(t) = \int_{-\infty}^{t} \tilde{g}(\tau) d\tau$. \tilde{f} and \tilde{g} are normalized signals that have positivity and conservation of mass. The optimal map is $G^{-1} \circ F$.

Get F^{-1} in O(N) complexity. N is the total number of data points in time.

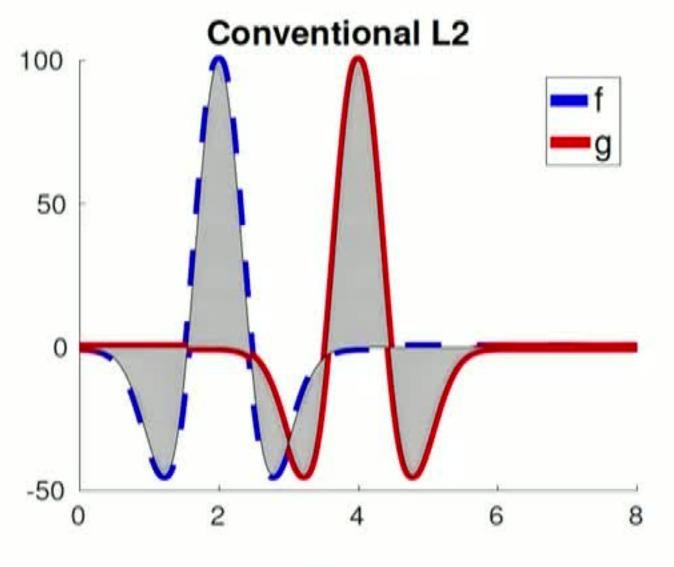
Data transformation

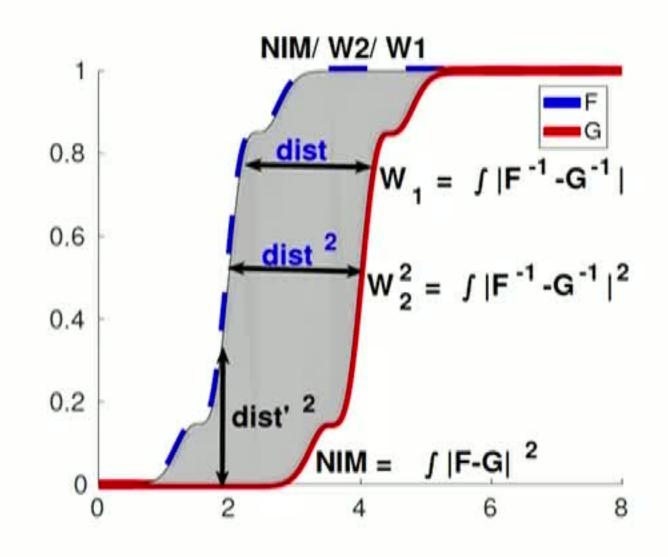
$$f \xrightarrow{\text{normalize}} \tilde{f} \xrightarrow{\text{integrate in time}} F \xrightarrow{\text{inverse function}} F^{-1}$$

The fundamental difference between L^2 and 1D optimal transport

0.

Signal g (red) is a shift of Ricker wavelet f (blue).

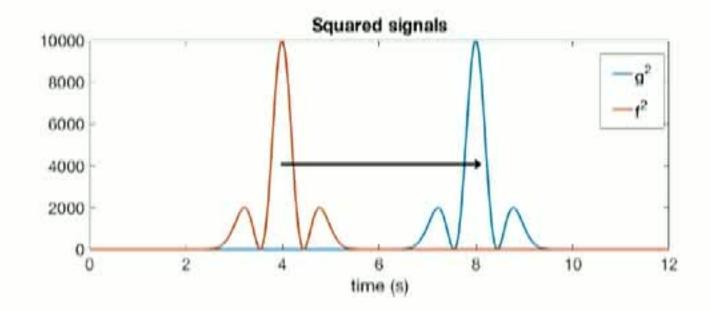




$$W_2: \int_0^1 |F^{-1}(x) - G^{-1}(x)|^2 dx.$$

Data Normalization: Bridging the Gap Between Seismic Signals and Probability Densities

How to normalize? The squaring scaling



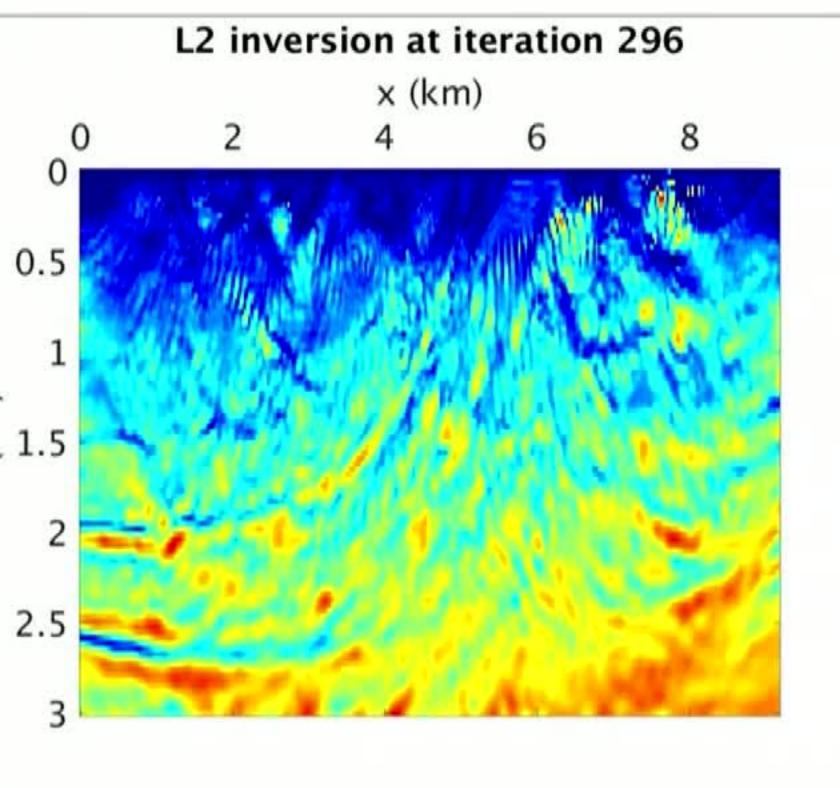
Square of the data: $f \rightarrow f^2$ and $g \rightarrow g^2$ (arrows indicate transport)

Why is it not working well in inversions?

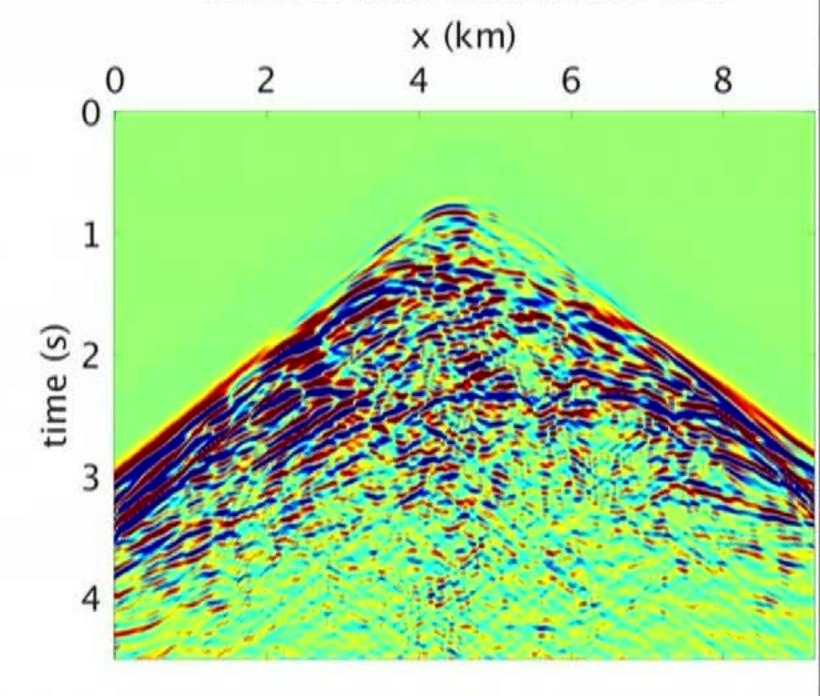
- Taking the squares boosts the higher frequency of the signal
- Squaring the signals may lose the important phase information (Refraction vs. Reflection)
- Not a one-to-one function; cannot recover the original signal after normalization

Inversion results

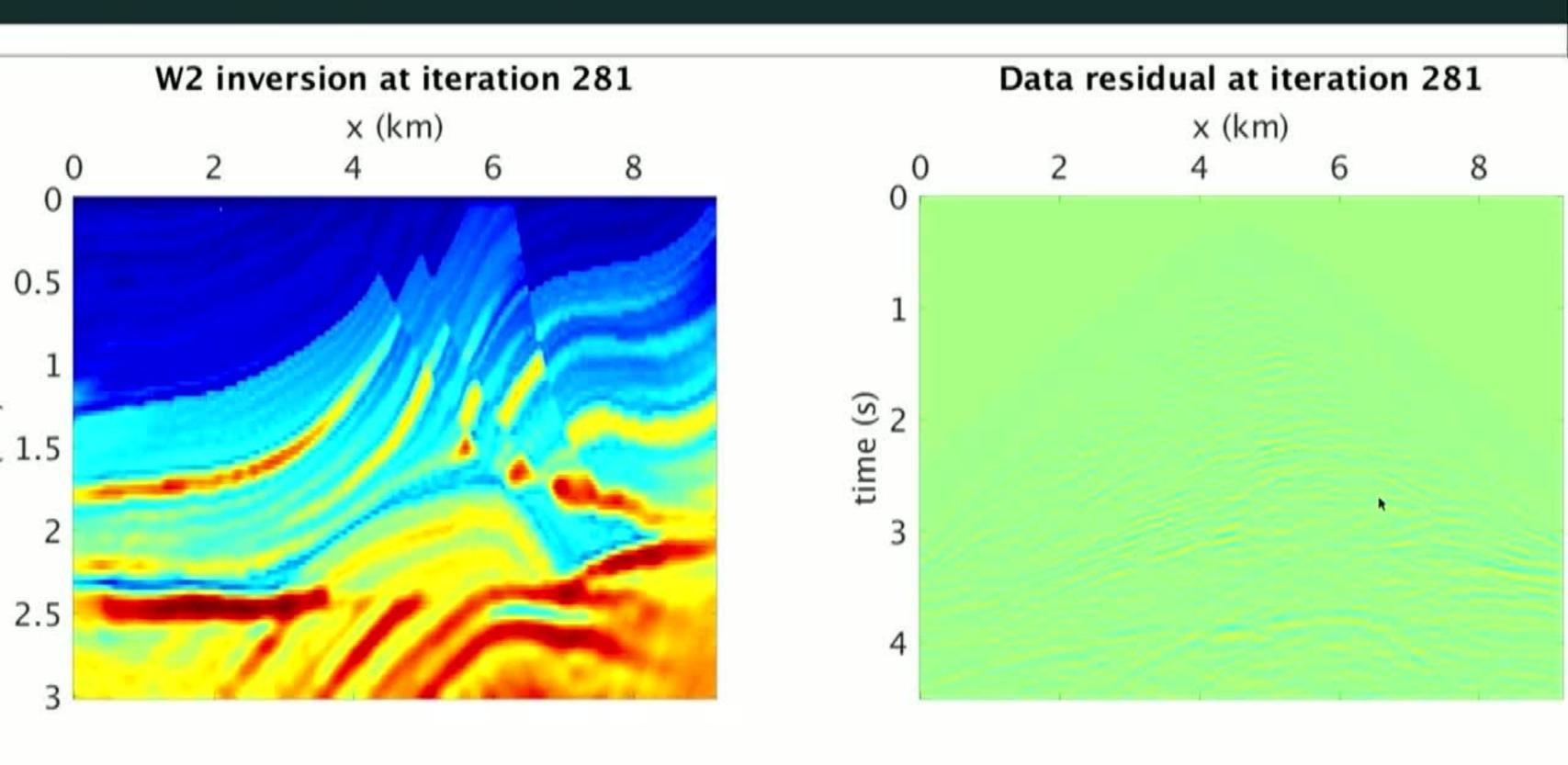
Marmousi model with L2 norm



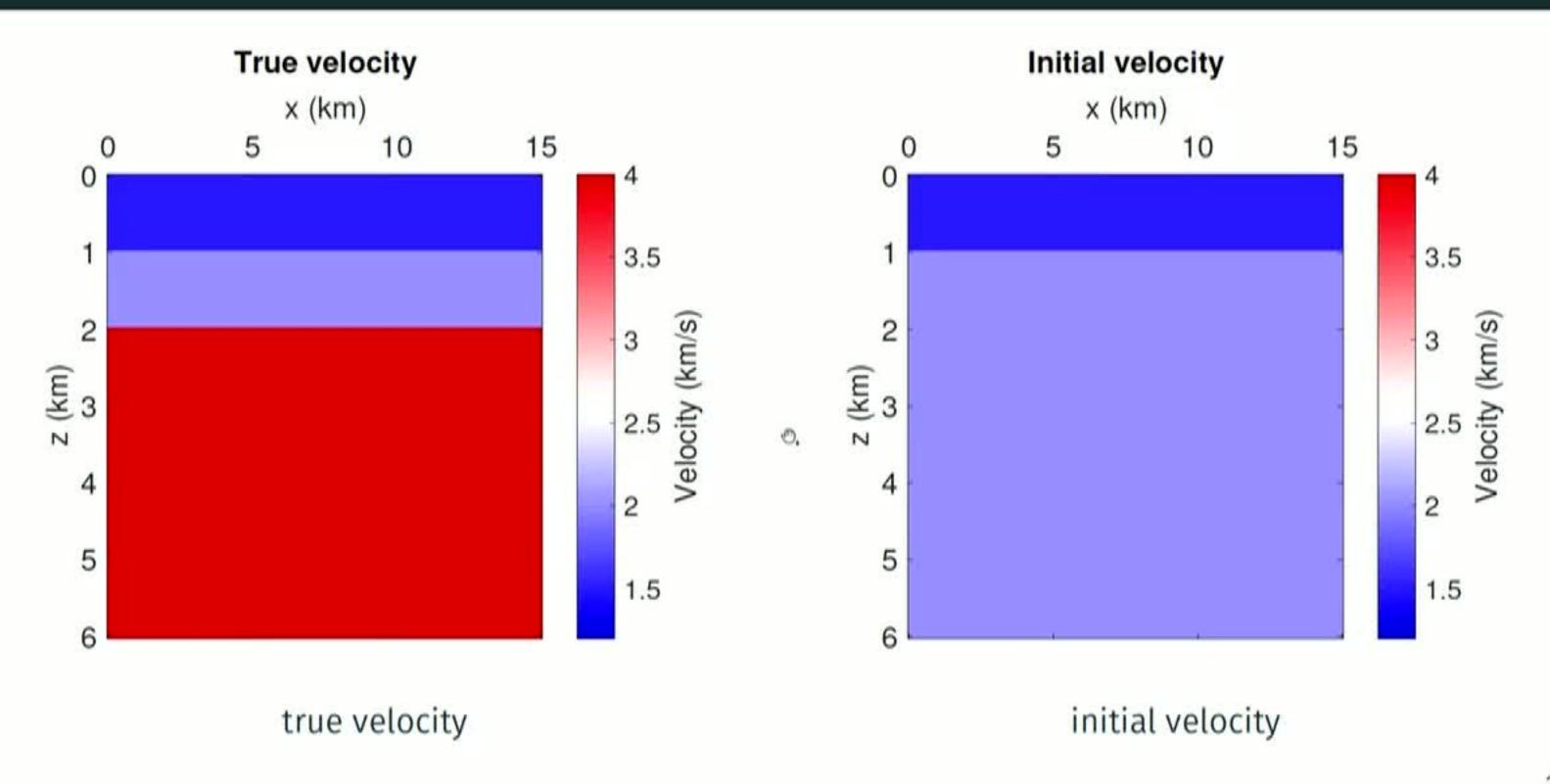
Data residual at iteration 296



Marmousi model with W_2 norm



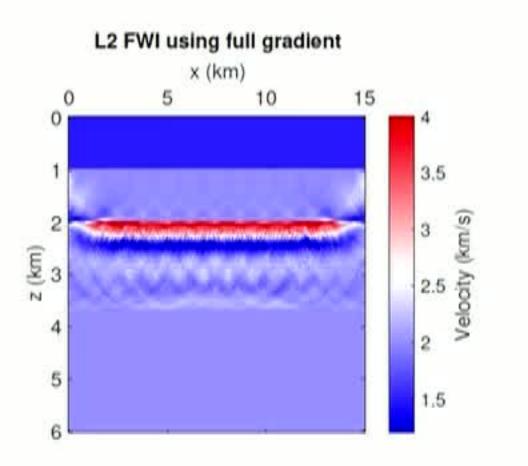
Reflection dominated FWI: local minima beyond cycle skipping

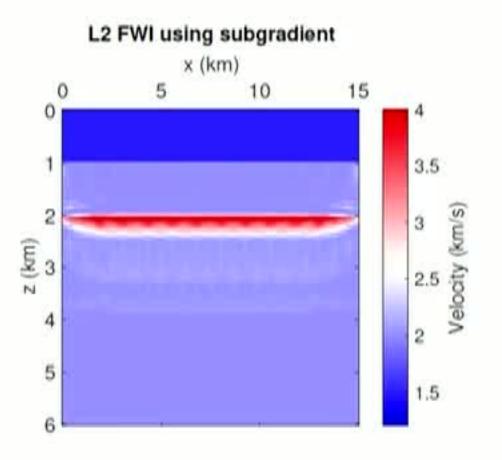


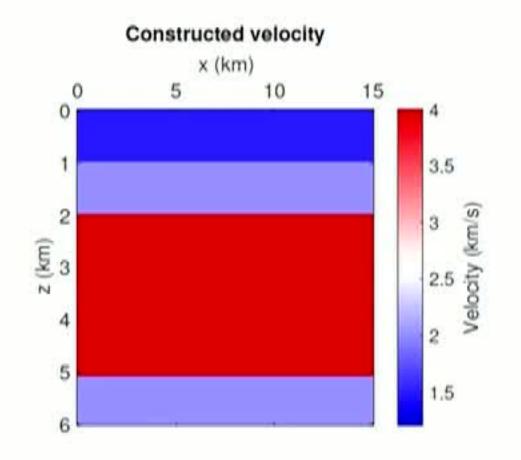
The difficulty of L^2 norm in Reflection FWI: local minima

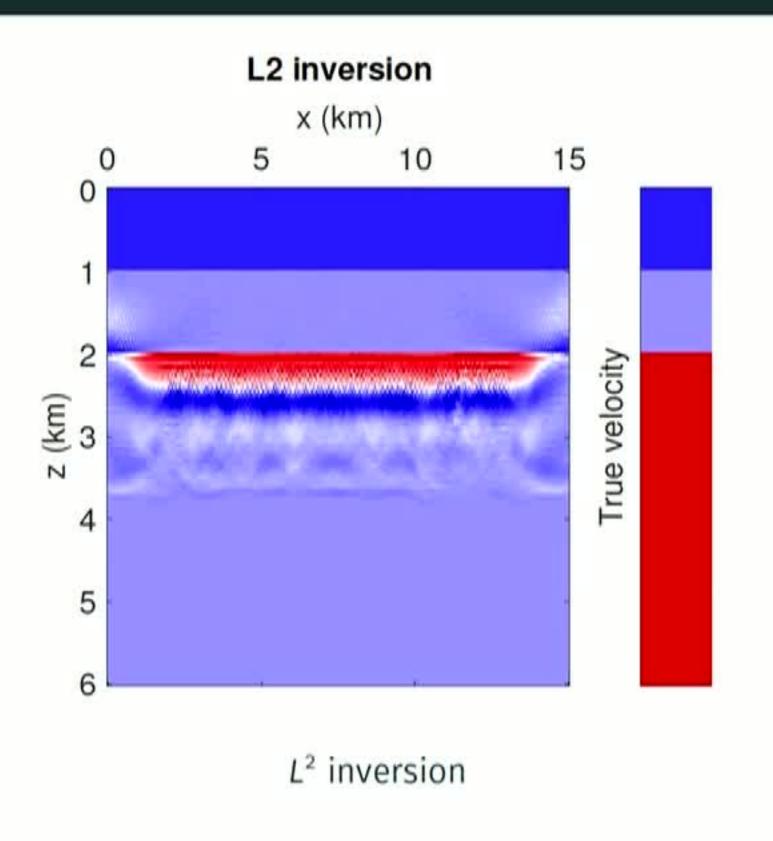
0.

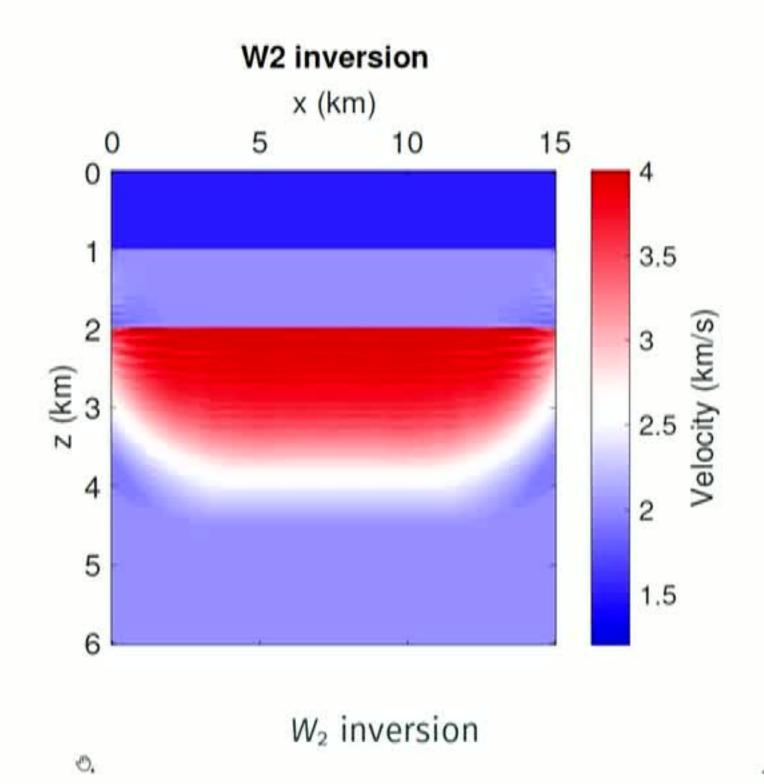
Three velocity models share the same L^2 data misfit



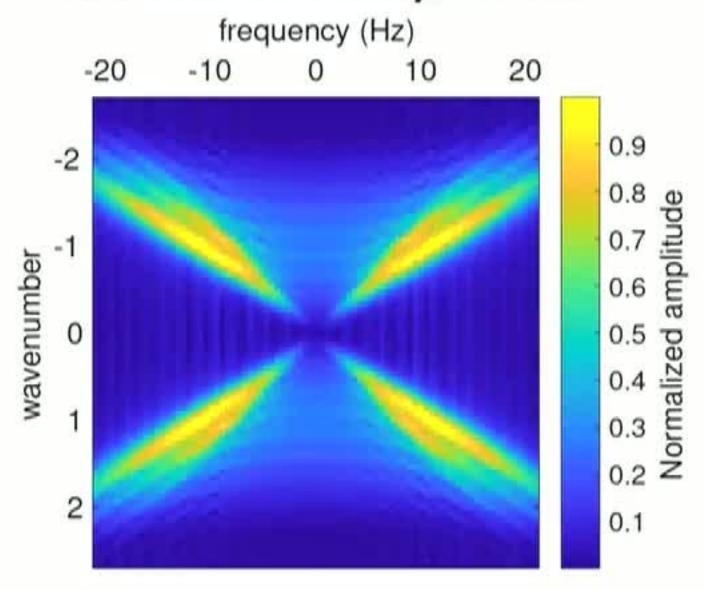






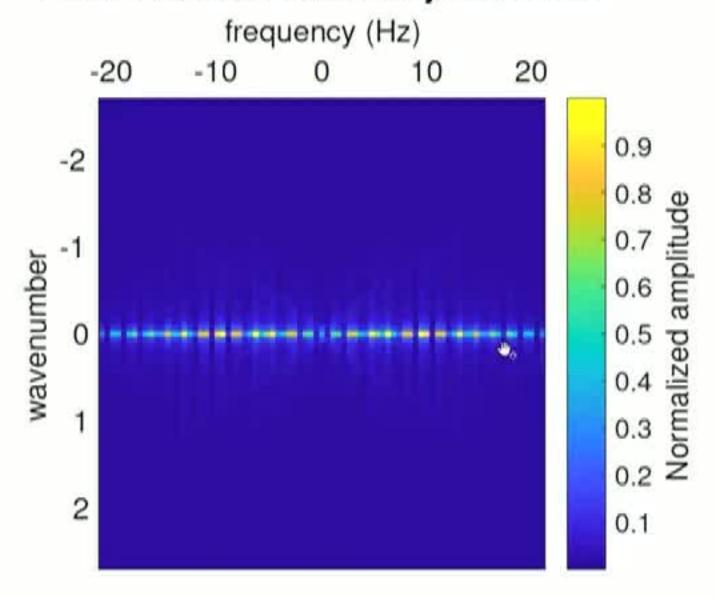


Fourier transform of L2 adjoint source

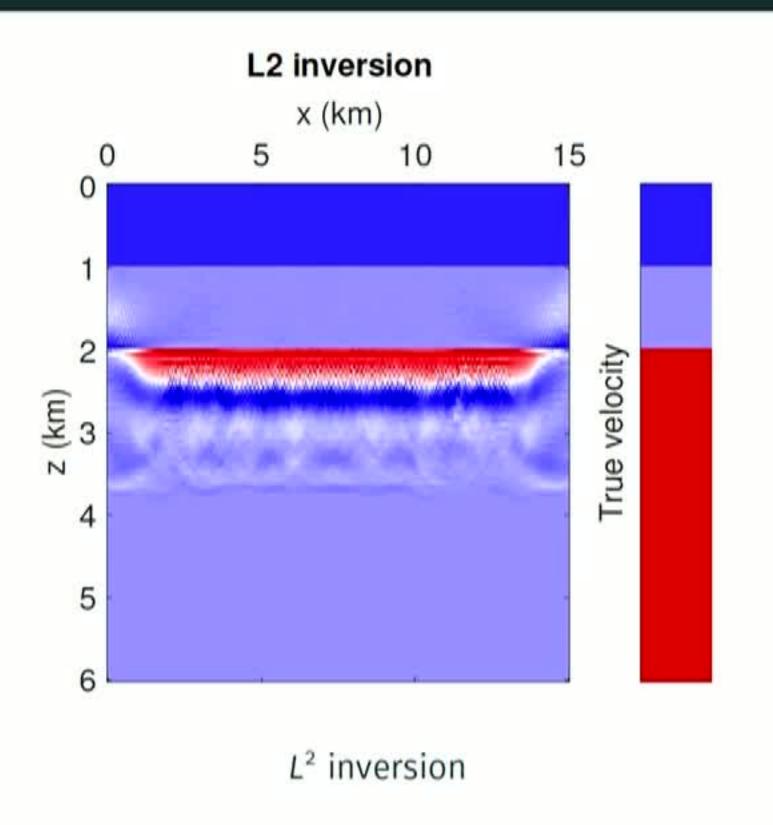


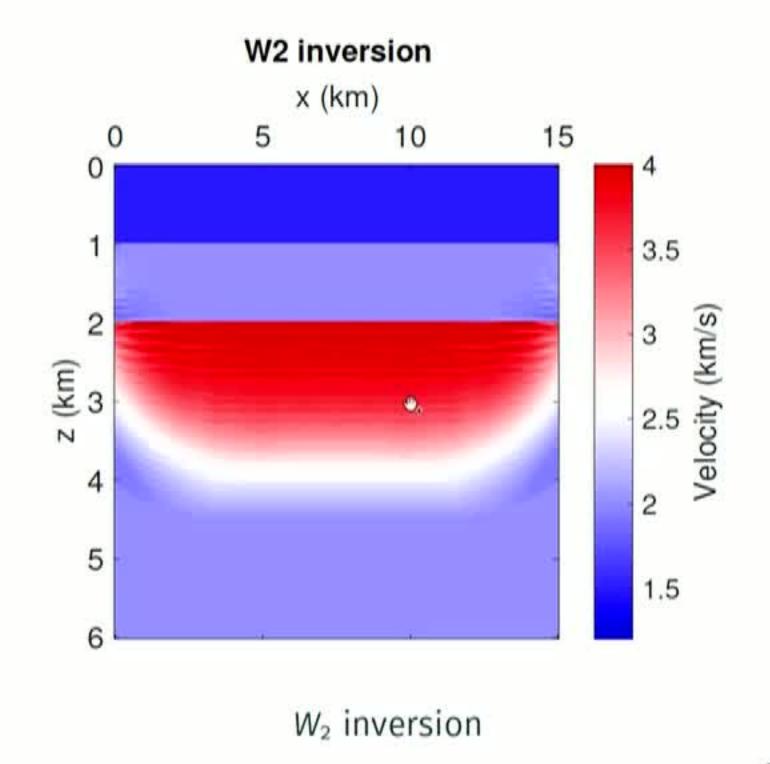
The Fourier transform of L2 data gradient

Fourier transform of W2 adjoint source

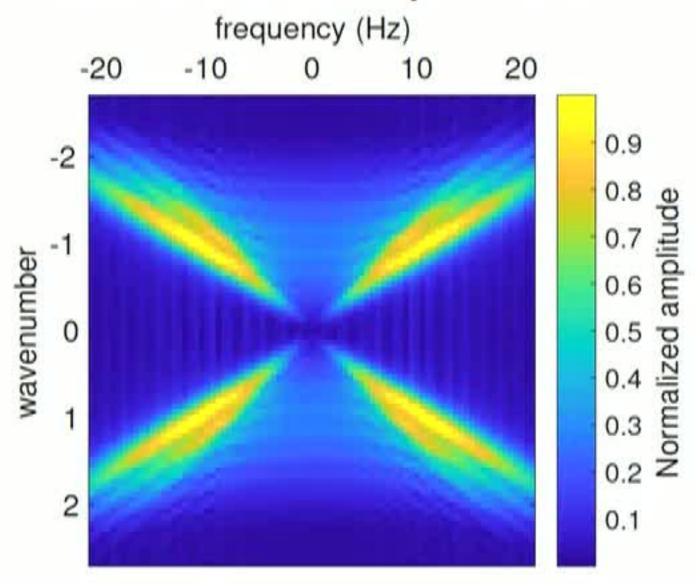


The Fourier transform of W2 data gradient



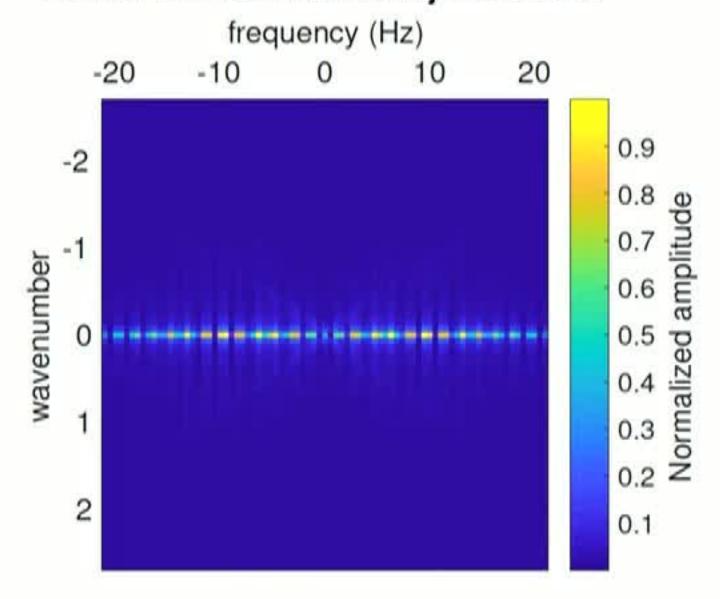


Fourier transform of L2 adjoint source



The Fourier transform of L2 data gradient

Fourier transform of W2 adjoint source



The Fourier transform of W2 data gradient

The data gradient of W_2 norm in FWI

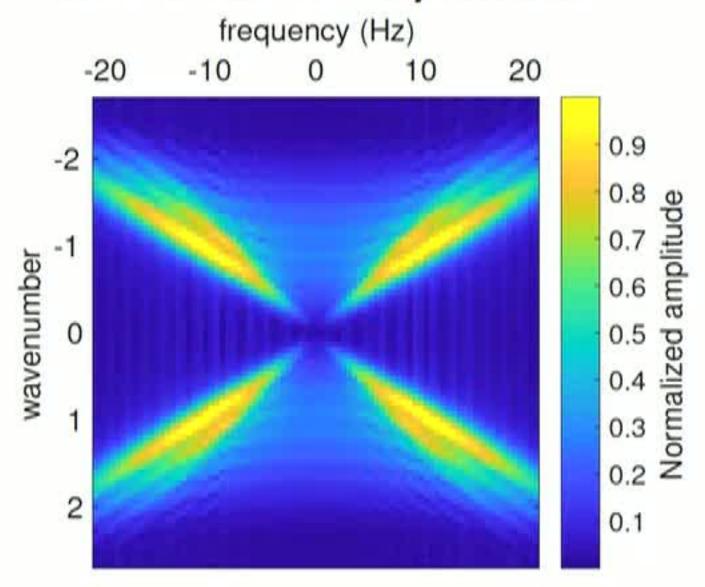
The corresponding Fréchet derivative, i.e. the adjoint source term in the backward propagation, has the following expression:

$$\frac{\partial W_2^2(f,g)}{\partial f} = \left(\int_t^{T_0} -2(s - G^{-1}(F(s))) \frac{dG^{-1}(y)}{dy} \Big|_{y=F(s)} f(s) ds \right) dt + |t - G^{-1}(F(t))|^2 dt.$$
(5)

The corresponding Fréchet derivative of L^2 norm:

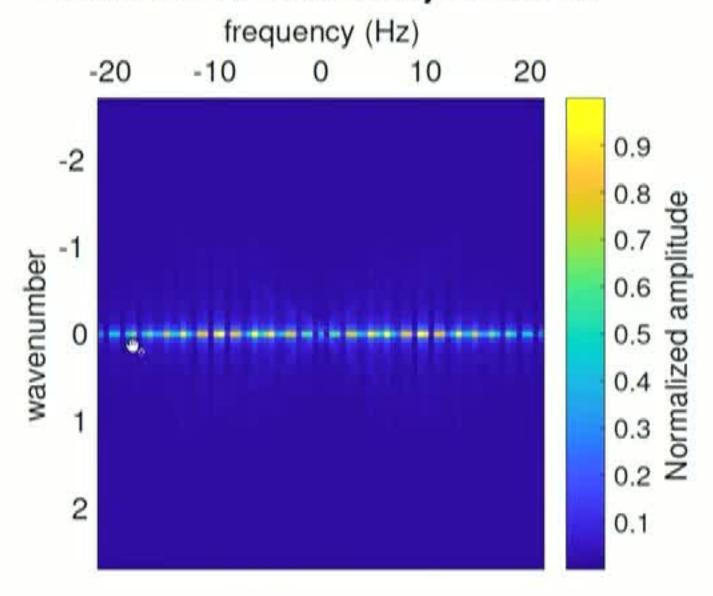
$$\frac{\partial L_2^2(f,g)}{\partial f} = f - g \tag{6}$$

Fourier transform of L2 adjoint source



The Fourier transform of L2 data gradient

Fourier transform of W2 adjoint source



The Fourier transform of W₂ data gradient

The data gradient of W_2 norm in FWI

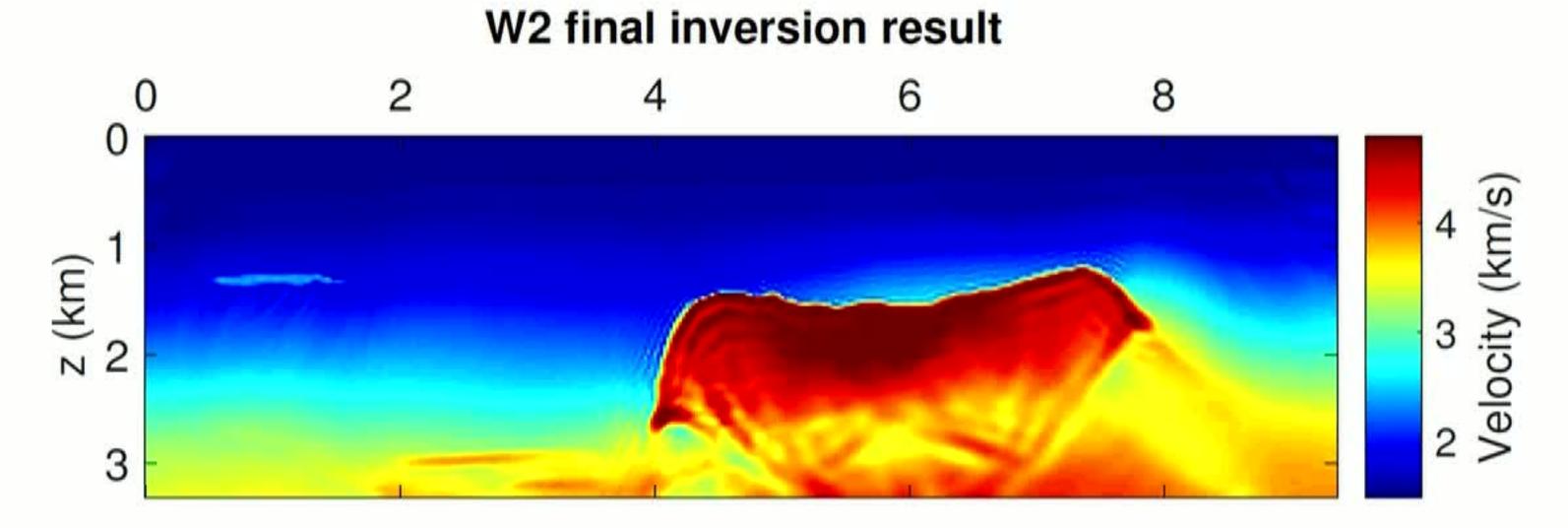
The corresponding Fréchet derivative, i.e. the adjoint source term in the backward propagation, has the following expression:

$$\frac{\partial W_2^2(f,g)}{\partial f} = \left(\int_t^{T_0} -2(s - G^{-1}(F(s))) \frac{dG^{-1}(y)}{dy} \Big|_{y=F(s)} f(s) ds \right) dt + |t - G^{-1}(F(t))|^2 dt.$$
(5)

The corresponding Fréchet derivative of L^2 norm:

$$\frac{\partial L_2^2(f,g)}{\partial f} = f - g \tag{6}$$

Salt Inversion: 15 Hz Ricker



W₂ final inversion

Conclusion

Summary

Motivation

Consider the misfit globally (with an optimal map) instead of point-by-point (L^2).

Ideal properties

- Convexity;
- Insensitivity to noise;
- Working for transmission, refraction, reflection, etc.

Synthetic examples

2004 BP & Marmousi

Field data examples

Collaboration with PGS, data from the North Sea

Future work

Data normalization; Adding regularization; Multi-parameter FWI (e.g. elastic wave equation); Application to other fields, etc.