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Motivation: seismic oil and gas exploration

Problems addressed:
@ Imaging: qualitative
estimation of reflectors
on top of velocity model

@ Data preprocessing:
multiple suppression

@ Common framework:
data-driven Reduced
Order Models (ROM)
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Forward model: acoustic wave equation

@ Acoustic wave equation in the time domain
uyr =Au InS). te& [0._ T]
with initial conditions

U0 =B, u¢lt—0=0,

sources are columns of B € RNV*m

@ The spatial operator A € RVN*N is a (symmetrized) fine grid
discretization of, e.qg.,
A= c?A

with appropriate boundary conditions
@ Wavefields for all sources are columns of

u(t) = cos(tv/—A)B € RNV*™ lll-[
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Data model and problem formulations

@ For simplicity assume that sources and receivers are collocated,
receiver matrix is also B

@ The data model is
D(t) = B"u(t) = B cos(tv/—A)B.

an m x m matrix function of time

Problem formulations:
@ Inversion: given D(t) estimate ¢

@ Imaging: given D(t) and a smooth kinematic velocity model ¢y,
estimate “reflectors”, i.e. discontinuities of ¢

© Data preprocessing: given D(t) obtain F(t) corresponding to
Born propagation regime
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Reduced order models

@ Data is always discretely sampled, say uniformly at t, = k7
@ The choice of 7 is very important, optimally = around Nyquist rate
@ Discrete data samples are

Dy = D(k7) = B cos (kn/~A") B — B” T,(P)B,

where Tk is Chebyshev polynomial and the propagator (Green'’s
function over time 7) is

P = cos (T\/::-'\) e RVXN

@ A reduced order model (ROM) P € R™*mMn B ¢ RM*M ghould
fit the data

i

Dy =B’ Tx(P)B=B'Tx(P)B, k=0,1,....2n—1
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Projection ROMs

@ Projection ROMs are of the form

-

P-V'PV. B=V'B.

O,

where V is an orthonormal basis for some subspace
@ What subspace to project on to fit the data?
@ Consider a matrix of wavefield snapshots

u, = u(kr) = T,(P)B

@ We must project on Krylov subspace

Kn(P,B) = colspan[B, PB P"~'B] = colspan U

@ Reasoning: the data only knows about what P does to
wavefield snapshots uk
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ROM from measured data

@ Wavefields in the whole domain U are unknown, thus V is
unknown

@ How to obtain ROM from just the data Dy ?
@ Data does not give us U, but it gives us inner products!
@ Multiplicative property of Chebyshev polynomials

T ) = H{Tiag(3) + Ty (x)]

@ Since uy = Tx(P)B and D, = B' T, (P)B we get

1
(UTU)r‘J = '-'fTUj = §(Df+j + D)),

1
(U'PU);; = u/Pu; = 2 (Djti+t + Djiv1 + Djyiot + Djj1) lll'[
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ROM from measured data

@ Suppose U is orthogonalized by a block QR (Gram-Schmidt)
procedure
U=VL', equivalently V=UL"’,

where L is a block Cholesky factor of the Gramian U’ U known
from the data

U'u=1LL"

@ The projection is given by

P-—V/PV =L (UTPU) L~F

where U'PU is also known from the data

@ Cholesky factorization is essential, (block) lower triangular
structure is the linear algebraic equivalent of causality lll.[
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Problem 1: Imaging

@ ROM is a projection, we can use backprojection

e If snapshots U cover Q well enough, then columns of VV' should
be good approximations of d-functions:

P~VV'PVV' = VPV’
@ As before, U and V are unknown
@ We have an approximate kinematic model, i.e. the travel times
@ Equivalent to knowing a smooth velocity ¢
@ For known ¢y we can compute everything, including

U, Vo, Po lll{
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ROM backprojection

@ Take backprojection P ~ VPVT and make another approximation:
replace unknown V with V,

P~ V,PV/]
@ For the kinematic model we know V, exactly
Po ~ Vnﬁovg
@ Approximate perturbation of the propagator
P — Py~ Vo(P — Po)V{
is essentially the perturbation of the Green’s function
0G(x,y) = G(x,y,7)— Go(x,y,T)

@ But 6G(x, y) depends on two variables x, y € ,
how do we get a single image”?
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Backprojection imaging functional

@ Take the imaging functional Z to be
I(x)=~d6G(x,x)=G(x,x,7)— Go(x,x,7), X€Q

@ In matrix form it means taking the diagonal

T — diag (VU(P = iig)vg) ~ diag(P — Py)

@ Note that

7 — diag ([VoV"] P V5] - [VoV3] Po [VoV] )

@ Thus, approximation quality depends only on how well columns of
VV] and V,V/ approximate j-functions lll'[
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Simple example: layered model
True velocity ¢ Backprojection image

R R R R T T TR T R T T A T TR TR TR TR TR TR TR T T TR TN
g e D e e e e e

L.& 1.3 1.0 i i.4 2.7 u 1.4 1.5 1.H i | £.4 .

| 0.6 . .4 0.k i
o 1 . N "

i i L. 1.5

@ A simple layered model, p = 32 RTM image
sources/receivers (black x) D b D D MDD

@ Constant velocity kinematic
model ¢ = 1500 m/s

Multiple reflections from waves
bouncing between layers and
surface

Each multiple creates an RTM
artifact below actual layers

L.t : 1.4
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Snapshot orthogonalization

Snapshots U

R R R R O R T TR T TR R R R R R
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Orthogonalized snapshots V
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Approximation of o-functions
Columns of VoV Columns of VV/
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High contrast example: fractures
RTM image

q. I

0.25.a30. 79 L1.238.D51.7/52 Z2.422.524.15 Q2500 0ol L1.251.50 1if9d ZidodD Ll
@ Two fractures, one branching, smooth background

@ High contrast: 1km/s inside fracture, 2 — 3km/s in the background lﬂ,[
@ m = 32 sources/receivers
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High contrast example: fractures

True ¢ Backprojection image Z

| ‘
029350151 1.25.50L1.752 2:.258.52.75 0.250.50.751 1.251.51.752 2.252.52.75
@ Almost complete elimination of multiples

@ Better resolution than RTM l.ﬂ'l
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High contrast example: fractures
RTM image

-

0.25).50. 75 1.23:51.752 Z2.238.524.75 0.250.5 0.751 1.251.5 1.7/52 24525 2.75
@ Two fractures, one branching, smooth background

@ High contrast: 1km/s inside fracture, 2 — 3km/s in the background lﬂ,[
@ m = 32 sources/receivers
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High contrast example: fractures

True ¢ Backprojection image Z

__

0.29).50.751 1.25.51.752 2.25.52.75 0.2505 0,751 1.251.51.752 2.252.5 2,75
@ Almost complete elimination of multiples

@ Better resolution than RTM l.ﬂ'[
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Geophysics example: Marmousi model

JB N7 AR 4 dd 48 %F S0 A Aad K L TH N Hd KR 92 96 10 1041081211612

04 00 1.2 16 2 24 20 22 236 4 44 40 52 56 € 2 76 0 04 00 92 96 10 104100110.211612 124120132

04 08 1.2 16 & 24 248 32 3.6 ¢ =N b4 b8 /4 .4 B8 92 96 10 104108102106 12 141281342
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High contrast example: fractures

True ¢ Backprojection image Z

d x l
0:29).50.751 1.25.51.752 2:252.52.75 0.2505 0,751 125151752 2.25252.75
@ Almost complete elimination of multiples

@ Better resolution than RTM lﬂ[
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High contrast example: fractures

True ¢ Backprojection image Z

e Al

0:29):50,751 1.25L.51.752 2:28.52.15 025050751 1.251.51.752 22525275
@ Almost complete elimination of multiples

@ Better resolution than RTM
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Problem 2: data preprocessing

@ ROM seems to have multiple-suppression properties
@ Which wave propagation regime has no multiple reflections?
@ Born regime!

@ Goal: use ROMs to generate data that the same medium would
produce if waves In it propagated according to Born model,
instead of the full wave equation

@ Data-to-Born transform: convert full waveform data to Born
data, a linearization around a known kinematic model

@ Once Born data is generated, can apply linearized inversion
algorithms (e.g. LS-RTM) lll-[
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Born approximation

@ To separate completely kinematics and reflections consider
wave equation in the form

C
Uy = ocV - (—VU) .
a
where acoustic impedance o = pcC
@ Assume ¢ = ¢y IS a known kinematic model

@ Only impedance o changes

@ Above assumptions are for derivation only, the method works
even Iif they are not satisfied

Ly
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Born approximation

@ Can show that
2

P~ |
2

Lng,
where

1 T 1
Lg=—-CV. +§cvq-, Lg =CV + §c‘?q‘

are affineing =logo
@ Consider Born approximation (linearization) with respect to q
around known ¢ = Cp

@ Perform second Cholesky factorization on ROM

e Cholesky factors Lq, L] are approximately affine in g, thus the
perturbation

IS approximately linear in g
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Data-to-Born transform

@ Compute P from D and P, from D° correspondingto ¢ = 0 (o = 1)
@ Perform second Cholesky factorization, find L, and Lo
@ Form the perturbation

e

L. = Lo +e(Lg — L), affineineq

@ Propagate the perturbation

2
2

b

D; =B’ (I—

L EI) B

© Differentiate to obtain DtB transformed data

dD;

Fy = D},
; K7 de |,

A.V. Mamonov ROMs for imaging and multiple removal



Example: Acoustics, DtB seismogram comparison
Impedance o = pcC Sound speed ¢

1.5
s 1.4
, | L.3
: 1.2
_ 1.1
1

0.3 0609 1.2 1.5 1.8 2.1 2.4 2.7 ' 0.3 06 09 1.2 1.5 1.8 2.1 2.4 2.7
Full waveform data Dy — Dg DtB transformed data Fx — D «

9 10 15 20 25 30 35 40 45 20 5 10 15 20 25 30 35 40 45 50
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Example: Acoustics, DtB data + RTM imaging

Impedance o = pC Sound speed ¢

: 2.8 : ,
. . , 1.
(] I ]
1.5
1

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 4.7 0.3 6,6 0.9 1.2 1.5 1.8 4.1 2.4 2.7

RTM image from full waveform data RTM image from DiB data

0.3

.3 0.6 09 1.2 15 1.8 2.1 2.4 2] 0.3 0.6 09 12 15 18 21 24 ,i :
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Example: Acoustics, DtB seismogram comparison
Impedance o = pcC Sound speed ¢

e
L !1_4
. 11.3
: 1.2
: gl
1

0.3 0.6 09 1.2 1.5 1.8 2.1 2.4 2.7 ' 0.3 06 0.9 1.2 1.5 1.8 2.1 2.4 2.7
Full waveform data Dy — Dy & DtB transformed data Fx — Dy «

< 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
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Example: Acoustics, DtB data + RTM imaging

Impedance o = pC Sound speed ¢

: 2.8 : ,
. . , 1.
(] I ]
1.5
1

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 4.7 0.3 6,6 0.9 1.2 1.5 1.8 4.1 2.4 2.7

RTM image from full waveform data RTM image from DiB data

0.3

0.6

.3 0.6 09 1.2 15 1.8 2.1 24 2.1/ 3 0.6 09 12 15 18 21 24 ,i :
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Example: Elasticity, two cracks

i

45 @ Transform elasticity problem to first
5 order form: Liouville transform

35 @ |f both velocities are fixed (here
’ Cp = 2Cs), there is only one
independent impedance o,

2.9

1.5 , @ Source: horizontal force, m = 25

0 1 2 3
Full waveform data True Born data DiB

Vartical valocity Horizontal velocity Vartical valocity Herlzontal velociy Vortical valocity Horizontal volocHy

200
300 300 L M, -
- e

S0

Al

00
e s V.2 1.2 A

W 1.2 al

V2 1. i : ' - VA 1.0 -
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Example: Elasticity, salt dome

75 kgﬁmzs

12000 @ Transform elasticity problem to first

w000 order form: Liouville transform
1UUU

sooo @ |f both velocities are fixed (here

8000 Cp = 2Cg), there is only one

-~ independent impedance o,

1000 2000 3000 4000 @ Source: horizontal force, m = 25
X, m

Full waveform data True Born data DtB

Vartical valoclty Harlzontal valoclty Vartical valoclly Harlzantal valocity Vartlcal valocity Harlzantal valoclty

abl)

1]

60

400
2000 4500 %00 2000 3500 500 2000 3500 %00 2000 3500
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Conclusions and future work

@ ROMs for imaging and data preprocessing (DtB)

@ Time domain formulation is essential, linear algebraic analogues
of causality: Gram-Schmidt, Cholesky

@ Implicit orthogonalization of wavefield snapshots: suppression
of multiples in backprojection imaging and DtB transform

@ Robust version exists: spectral truncation of the Gramian

Future work:

@ Data completion for partial data (including monostatic, aka
backscattering measurements)

@ Frequency domain analogue (data-driven PML)

b
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