On elastic seismic inversion: uniqueness and conditional Lipschitz stability

Jian Zhai

Department of Computational and Applied Mathematics, Rice University

July 13, 2018

Seismic inversion

Recovery of subsurface geological structure

Use seismic waves

The fundamental problem:

Reconstruct the interior structure from ground measurements.

0.

Mathematically formulated as inverse problems

- Uniqueness
- Stability
- Reconstruction

Acoustic model: results abound; not good enough for modeling land exploration

Inverse Problem

Time-harmonic elastic waves:

$$\operatorname{div}(\mathbf{C}\varepsilon(u)) + \rho\omega^2 u = 0 \text{ in } \Omega \subset \mathbb{R}^3$$

0.

- $\varepsilon(u) = \frac{1}{2}(\nabla u + \nabla u^T);$
- ρ : density;
- C: elastic tensor C_{ijkl} .
- u: displacement

Assume C is isotropic:

$$C_{ijkl}(x) = \lambda \delta_{ij} \delta_{kl} + \mu (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk})$$

Inverse boundary value problem

Determine λ, μ, ρ from boundary measurements (data)

Neumann-to-Dirichlet map

Data: local Neumann-to-Dirichlet map $\Lambda_{\mathbf{C},\rho}^{\Sigma}$:

o.
$$\Lambda_{\mathbf{C},\rho}^{\Sigma}: (\mathbf{C}\varepsilon(u))\nu \to u|_{\Sigma}$$

with $(\mathbf{C}\varepsilon(u))\nu$ supported in $\Sigma\subset\partial\Omega$

For acoustic waves

$$\Delta u + \omega^2 c^{-2} u = 0$$

- Data 1: Green's function G(x, y) given at all $x \in \partial \Omega$ and $y \in \partial \Omega$;
- Data 2: NtD (DtN) map $\Lambda_{\omega^2c^{-2}}$

Equivalent! (Nachman 88')

Alessandrini's identity

Assume that u_1 and u_2 are solutions to

$$\operatorname{div}(\mathbf{C}^k \varepsilon(u_k)) + \rho^k \omega^2 u_k = 0 \text{ in } \Omega$$

for k = 1, 2. Then we have the following Alessandrini's identity

$$\int_{\Omega} \left((\mathbf{C}^{1} - \mathbf{C}^{2}) \varepsilon(u_{1}) : \varepsilon(u_{2}) - (\rho^{1} - \rho^{2}) \omega^{2} u_{1} \cdot u_{2} \right)$$

$$= \left\langle (\Lambda_{\mathbf{C}^{1}, \rho^{1}} - \Lambda_{\mathbf{C}^{2}, \rho^{2}}) (\mathbf{C} \varepsilon(u_{1})) \nu, (\mathbf{C} \varepsilon(u_{2})) \nu \right\rangle$$

- Relate the data with the parameters;
- General strategy: test a class of special solutions, and extract uniqueness and stability.

Nonuniqueness

ð.

Time-harmonic acoustic waves

$$\nabla \cdot (\gamma \nabla u) + \omega^2 \rho u = 0$$

 γ, ρ smooth.

- Uniqueness from DtN maps with two frequencies (Nachman 88')
- Nonuniqueness with single frequency data (Arridge, Lionheart 98')

Stability with smoothness assumptions

Inverse conductivity

Identify γ in div $(\gamma \nabla u) = 0$ from Dirichlet-to-Neumann map Λ_{γ}

 $n \geq 3$, Alessandrini 88', 90'

$$\|\gamma\|_{H^{s+2}} \le E, s > n/2$$

then

$$\|\gamma_1 - \gamma_2\| \leq C\omega(\|\Lambda_{\gamma_1} - \Lambda_{\gamma_2}\|)$$

where

$$\omega(t) = |\log t|^{-\eta}$$

Optimal! (Mandache 01')

Increasing fequency? still optimal in general; believed to be true with more/other assumptions (non-trapping?)

Lipschitz stability with piecewise constant assumptions

Theorem (Beretta-de Hoop-Francini-Vessella-Z, 2017)

Assume C^1 , C^2 are two isotropic elasticity tensors, ρ^1 , ρ^2 are two densities, and C^i , ρ^i , i=1,2 are piecewise constant on a given domain partitioning. There exists a positive constant C such that,

$$\|\lambda^{1} - \lambda^{2}\| + \|\mu^{1} - \mu^{2}\| + \|\rho^{1} - \rho^{2}\| \le C\|\Lambda_{\mathbf{C}^{1}, \rho^{1}}^{\Sigma} - \Lambda_{\mathbf{C}^{2}, \rho^{2}}^{\Sigma}\|.$$

de Hoop, Qiu, Scherzer (2012): Hölder stability \Rightarrow local convergence of iterative reconstruction methods

Stability for piecewise constant coefficients

Test singular solutions in Alessandrini's identity.

0.

- Extend the domain;
- Point sources outside the domain, Green's function $G(\cdot, y)$ with y outside the domain;
- Alessandrini-Vessella 05' for conductivity equation;
- For different IBVPs, Beretta, de Hoop, Francini, Morassi, Qiu, Rosset,

. . .

Key ingredient: Unique continuation principle

Suppose u is a solution of some elliptic PDE in Ω , ||u|| is small in $\mathcal{K} \subset\subset \Omega$, then ||u|| is also small in $\widetilde{\Omega}\subset\subset\Omega$, with

$$||u||_{\widetilde{\Omega}} \leq C||u||_{\mathcal{K}}^{\alpha}$$

Idea of proof

- Point sources outside the domain;
- Approach the boundary, recover coefficients on D_1 ;
- Propagation of the point sources, approach the interface of D_1 and D_2 ; (UCP plays a role)
- Iterate this process.

Comments on the Lipschitz constant

C: Lipschitz constant, N: the number of subdomains, ω : frequency

- C grows as N grows;
- C decreases as ω grows (conjecture).

An improved Unique Continuation Principle (almost Lipschitz) for

$$\Delta u + k^2 u = 0$$

by Hrycak-Isakov 04',

$$||u||_{\widetilde{\Omega}} \leq C||u||_{\mathcal{K}} + \mathcal{O}(\frac{1}{k})$$

Reconstruction scheme

€.

- Start from a low frequency and a coarse domain partition;
- Iterate until convergence;
- Increase the frequency and refine the partition, iterate until convergence, and use it as a new initial guess; Continue this step.

0.

