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Inverse/imaging problems in seismology: from seismic data, deduce

I spatial distribution of rock mechanical parameters: wave velocities, density,...

I locations of faults and other structures - discontinuities in mechanical
parameters

Agenda:

I how to make a seismic image (what’s an image?)

I why it works, and how to improve it to an inversion ≈ data-predicting model
(via iteration)

I remaining challenges (how to start iteration)
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Autofocusing: estimating reference/initial model

Summary and Challenges



Marine streamer acquisition [thanks: Schlumberger]



Modeling mechanical parameter fields Cijkl , ρ, ...: should allow at least
discontinuities, cf. inspection of outcrops.

Left: Outcrop, Stuart I., WA (WS, 8/11). Right: Marmousi synthetic model
(IFP 89): bulk modulus map κ, unit = GPa (density = 1 g/cm3)



Acoustic model of seismic waves, a good if not great model:

ρ
∂v

∂t
= −∇p;

∂p

∂t
= −κ∇ · v + f ; p, v = 0, t << 0

p=pressure, v=particle velocity, f =energy source

κ=bulk modulus, ρ=material density

.log κ, log ρ ∈ L∞(R3) ⇒

I Unique causal weak solution p, v for causal f ∈ L2
loc(Rt , L

2(R3
x))

I Smooth in κ, ρ if f smooth in t

(Lions 68, 71, Stolk 00, Blazek et al. 13)



Energy source model: isotropic point radiators f (x, t; xs) = w(t)δ(x− xs) at
source locations xs (many!)

Receiver model: sample p at receiver locations xr (many!), over time interval
[0,T ]

Acquisition manifold (xs , xr ) ∈ Γ ⊂ R3 × R3

Modeling (forward, prediction) operator F [κ] = p|Γ×[0,T ] (this talk: fix ρ and
ignore)

Numerical methods: Finite Difference, Finite Element (CG, DG, SEM,...),...



2D Marmousi example:

I 180 sources xs ∈ [240, 8832]], zs = 12 m

I 382 receivers xr ∈ [12, 9156], zr = 12 m

I w = indef. integral of bandpass filter [2.5,5,25,30] Hz

I staggered FD scheme, order (2,8):
I space grid: 767(x)× 291(z), ∆x = ∆z = 12 m
I recorded time grid: nt = 1001, ∆t = 4 ms (interp. from internal simulation

grid)



Simulated (“synthetic”) shot record = F [κ](·, ·; xs)
Shot 90 (of 180), xs = 4560 m, zs = 12 m



Basic inverse problem of seismology, acoustics version, as nonlinear least squares:
given data d , find κ to minimize

JFWI[κ] =
1

2
‖F [κ]− d‖2

= “Full waveform inversion” (FWI): feasibility, then commoditization over last 15
yrs - much promise, many challenges - largest number of sessions at 2017 SEG

Most practical industry data processing ≈ solution δκ of linearized least squares

JLSM[κ0, δκ] =
1

2
‖DF [κ0]δκ− δd‖2



Background bulk modulus map κ0 (density = 1 g/cm3)
transparent (geometric optics), determines time of travel



Perturbation bulk modulus map δκ (density perturbation = 0 g/cm3), creates
reflections



DF [κ0]δκ = δp|Γ×[0,T ], where

ρ0
∂δv

∂t
= −∇δp

∂δp

∂t
= −κ0∇ · δv − δκ∇ · v0

⇒ use same FD scheme to approximate DF [κ0]δκ

Abbreviation: F δκ = DF [κ0]δκ



Linearized shot record F δκ(·, ·; xs), xs = 4560 m



Simulated shot record - F [κ](·, ·; xs), xs = 4560 m
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Basic principle of seismic imaging: to form image of subsurface, “cook” data to
resemble linearized data δd , then apply transposed linearized modeling operator

image = FT δd

Computation of FT via numerical solution of wave equations: adjoint state
method (Chavent & Lemmonier 74, Plessix 06)

⇒ data as energy source in backwards-in-time simulation: Reverse Time
Migration (“RTM”)



FT δd = RTM image



δκ = model perturbation



Why is FT δd an image?

“Image of δκ” = “has (approximately some of) same singularities as δκ”

High frequency asymptotic analysis 80’s-90’s (Beylkin, Rakesh, Bleistein,
Burridge, Spencer, de Hoop, Lambaré, Jin, Nolan, ten Kroode, Smit, Verdel,
Stolk,...):

I some limitations ⇒ F ≈ Fourier integral operator

I more limitations ⇒ FTF ≈ pseudodifferential operator (“ΨDO”) - 2D:
generic (Stolk 00)

I ⇒ if δd = F δκ then singularities of FT δd = FTF δκ ⊂ singularities of δκ
(singularity = wave front set)



Zhang & Bleistein 03, 05, Zhang et al. 09, ten Kroode 12,...: Explicit
computation of principal symbol of FTF

FTF δκ(x) ≈ const. ×
∫

dke ik·x
(...)

cos θr cos θs
δκ̂(k)

I cos θs,r = wave/ray angle of incidence at source, receiver

I “(...)” = explicit filters, rational functions of κ0, ρ0

NB: construction requires extension of F - extended model depends on artificial
space variables, scattering angle,..., explicit computation of extended FTF
(const.=1)



Calculus of ΨDOs ⇒ cancel factors in integrand using computable filters,
multiplication operators

⇒ approximate inverse F † modulo scale, low frequency error = true/preserved
amplitude RTM (“TARTM”)

Hou & S. 15, 17: factorization

F † = W−1
m FTWd ,

Wm,Wd simple explicit filters: Wd = −|f |−3 ∂
∂zs

∂
∂zr
, W−1

m = 32ρ−1κ3|kz | -
column-by-column (“trace-by-trace”) action, negligible add’l cost beyond RTM



F [κ0]†d = true amplitude RTM



δκ = model perturbation



Application to field data: Mobil “Viking Graben” survey - marine seismic line,
Norwegian sector of North Sea

Released for 1994 SEG Annual Meeting post-convention workshop, described in
Foster & Keys: “Comparison of Seismic Inversion Methods on a Single Real
Dataset” (SEG 98)

Preprocessing (“parabolic Radon demultiple”) - cook to resemble linearized data

This example: RTM vs. TARTM, 200 shots near Well B



Viking Graben: RTM image of shots 269-508 - Automatic Gain Control
(“AGC”) ⇒ amplitudes are meaningless



Viking Graben: asymptotic inverse / TARTM image - reasonable
fit to well log (Hou & S. Geophysics 18)
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Alternative approach to improve RTM: solve linear least squares

JLSM[δκ] =
1

2
‖F δκ− δd‖2

“Linearized inversion” (Lailly et al. 89, Chavent & Plessix 99), Least Squares
Migration (LSM - Nemeth & Schuster 99, Kuehl & Sacchi 04,....)

Equivalent to linear system - too large for Gaussian Elimination, must use
iterative method

Standard choice: conjugate gradient method or equivalent, each iteration = 1 F
+ 1 FT (RTM) - expensive!!!



LSM - 20 CG iterations, data residual ≈ 40%



δκ = model perturbation



Good news: compared to RTM image, LSM image has

I major reflectors still in right places

I more balanced amplitudes (that is, output is more similar to δκ)

I attenuates acquisition footprint, low frequency refraction noise

I accommodates any wave physics

SEG 17: multiple sessions on LSM (elastic, acoustic, Q, case studies,...)

Bad news:

I $$$$: every iteration costs 1 linearized forward map (F ) and 1 RTM (FT )
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Recall
F † = W−1

m FTWd , F
†F ≈ const. I

Some restrictions ⇒ Wm, Wd are SPD ⇒ F † = W−1
m FTWd is transpose of F in

weighted norms ⇒ F unitary modulo scale

Replace scalar products, transpose in CG with (Wm,Wd)-weighted versions ∼
preconditioned CG

⇒ much faster convergence (Hou & S. SEG 16, EAGE 16, Geophysics 17)



LSM - 20 iterations PCG, data error < 10%



δκ = model perturbation



Iteration number vs. data error: Red = CG, Blue = PCG
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LSM: given δd and κ0, find δκ to minimize
∑

xs ,xr ,t
|F [κ0]δκ− δd |2

Full Waveform Inversion (“FWI”): given d , find κ to minimize
∑

xs ,xr ,t
|F [κ]− d |2

LSM is linearized FWI: why not apply same tricks to FWI?

Both LSM and FWI require kinematically accurate model a priori: LSM makes no
updates to background, FWI needs initial model prodicting travel times to < 1/2
wavelength (Pratt 98)



Standard industry choice: gradient descent (= steepest descent)

I compute FWI gradient g = F [κ]T (F [κ]− d)

I κ← κ− αg , α chosen by (very short!) line search

Gauss-Newton FWI algorithm (Ghattas et al 03, 09; Métivier et al 12, 14):
replace FT with (FTF )−1FT = LSM solution - fewer iterations, more reliable
convergence, but requires inner iteration, much more expensive

Hou & S. SEG 16: replace FT by approximate inverse: search direction =
F [κ]†(F [κ]− d) = A(pproximate) G(auss) N(ewton)

Cost of AGN step ≈ cost of FWI gradient descent step



Initial model = smoothing of Marmousi model

Hou & S. SEG 16



Velocity after 1 AGN iteration

Hou & S. SEG 16



Velocity after 40 AGN iterations (overkill!)

Hou & S. SEG 16
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Steepest Descent
L−BFGS
Approximate Gauss−Newton

Data residual vs. Iteration: AGN (red), gradient descent (blue), L-BFGS (green)

Hou & S. SEG 16
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“It all depends on v(x,y,z).”
- J. Claerbout

Imaging/Inversion success depends on background (LSM) or initial (FWI) model
(for acoustics: κ or v =

√
κ/ρ)

How to obtain? First idea: just use FWI!

Verdict: disaster (Gauthier, Tarantola, & Virieux 86)



Visualizing the shape of the objective: scan from model m0 to model m1

f (h) = JFWI[(1− h)m0 + hm1]

Expl: data = simulation of Marmousi data (Versteeg & Grau 91), with bandpass
filter source.

Marmousi bulk modulus: smoothed m0, original m1



Red: [2,5,40,50] Hz data. Blue: [2,4,8,12] Hz data



Diameter(domain of convexity) ∼ longest wavelength w/ good S/N

So collect low frequency data... (Thanks: Dellinger et al., SEG 16)



However - how low is “low”?

Zombie inversions: Plessix et al 10, successful inversion with lowest good freq =
1.5 Hz, failed inversion with 2.0 Hz

⇒ major theme in FWI research: how to make FWI robust against lack of
low-frequency data, or equivalently lack of sufficiently accurate initial guess

O(10) conceptually distinct approaches suggested in last decade



MS151 = a sampling of attacks on the robustness problem

I Y. Yang, B. Engquist: replace L2 norm with Wasserstein metric - larger
region of convexity for complex, localized signals (also Métivier et al.)

I A. Mamonov et al.: extract projection of Green’s function onto sampled
time snapshots (reduced-order model) via block Cholesky, remove nonlinear
effects, use other techniques developed for linearized data

I J. Zhai: strong restrictions on material parameter variation (piecewise
constant) permit application of BC method, application to anisotropic
elasticity

I WWS: model extension = add non-physical parameters to κ etc., leverage
data redundancy, extend F invertibly - “good” model trivializes (focuses)
extension (very old idea, many variants)



also:

I traveltime inversion (“tomography”)

I hybrid traveltime-waveform objectives, dissection of FWI gradient

I other data domains (Laplace, Fourier,...)

I Marchenko inversion (Green’s function reconstruction based on reciprocity)

I band extrapolation via event identification (Demanet & Li, Warner et al.)

I band extrapolation via flux-corrected transport (Kalita & Alkhalifah)

I neural nets (see MS158, also geo literature)

I etc. etc.

see IPAM Spring Program 17 WS 2
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I How to see through rock: apply adjoint of linearized modeling operator F to
“cooked” seismic data (RTM), iterate to improve data fit (LSM),
accommodate nonlinear physics (FWI)

I Why it works: various restrictions ⇒ F ≈ unitary with good choice of norms

I ⇒ accelerate convergence of Krylov methods

I Key difficulty: how to chose background (LSM), initiate iteration (FWI)

Many ideas for estimating background/initial model, final verdict not yet in - very
active field of research, see MS151 for sampling

Also incorporate higher fidelity physics in acceleration technology (beyond
acoustics - elasticity, viscoelasticity,...)
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