Homomorphic Encryption:

Manipulating Data while it is Encrypted

Craig Gentry
IBM T.J. Watson Research Center

"Homomorphic Encryption" at a High Level

A way to delegate <u>processing</u> of your data, without giving away <u>access</u> to it.

Other Applications

- Private Google search
 - Encrypt my query, send to Google
 - Google answers my query without seeing it
 - Google's response is also encrypted

Other Applications

- Private Google search
 - Encrypt my query, send to Google
 - Google answers my query without seeing it
 - Google's response is also encrypted
- Private online tax return preparation
- Encrypted artificial intelligence

Does Homomorphic Encryption Seem Impossible?

Actually, separating <u>processing</u> from <u>access</u> makes sense even in the physical world...

An Analogy: Alice's Jewelry Store

Workers assemble raw materials into jewelry

An Analogy: Alice's Jewelry Store

- Workers assemble raw materials into jewelry
- But Alice is worried about theft How can the workers <u>process</u> the raw materials without having <u>access</u> to them?

An Analogy: Alice's Jewelry Store

- Alice puts materials in locked glovebox
 - For which only she has the key
- Workers assemble jewelry in the box
- Alice unlocks box to get "results"

An Encryption Glovebox?

- Alice delegated <u>processing</u> without giving away <u>access</u>.
- But does this work for encryption?
 - Can we create an "encryption glovebox" to securely process data while it remains encrypted?

The Homomorphism in HE

 $\mathcal{M} = \text{set of messages}, \, \mathcal{C} = \text{set of ciphertexts}$

$$C_{1} = Enc(m_{1}), \dots \\ C_{t} = Enc(m_{t})$$

$$C_{t} = Enc(m_{t})$$

$$Dec(sk, \cdot, \dots, \cdot)$$

$$\mathcal{D}ec(sk, \cdot)$$

$$\mathcal{M}^{t} \xrightarrow{f(\cdot, \dots, \cdot)} \mathcal{M}_{f(m_{1}, \dots, m_{t})}$$

For any key, messages, ciphertexts, and function f, the order of f and Decryption doesn't matter: either way we get $f(m_1, \ldots, m_t)$.

Public-Key Encryption

Public Key Encryption

- Key Generation: Alice uses randomness to generate a key pair (pk, sk). She publishes pk and keeps sk secret.
- Encryption: c ← Enc(pk, m) to get a ciphertext c that encrypts message m.
- ▶ Decryption: m ← Dec(sk, c) to obtain m.

Security of Public-Key Encryption

- □ Semantic security: For any $m_0 \neq m_1$, $(pk, Enc_{pk}(m_0)) \approx (pk, Enc_{pk}(m_1))$
 - means indistinguishable by efficient algorithms.
- Any semantically secure encryption scheme must be probabilistic – i.e., many ciphertexts per plaintext.

But what does "indistinguishable by efficient algorithms" mean?

Algorithms and Computational Hardness

Are You Smarter than a 5th Grader?

What is 1 + 2 + 3 + ... + 100?

Are You Smarter than a 5th Grader?

What is 1 + 2 + 3 + ... + 100?

Gauss

Algorithm!

$$1 + 2 + 3 + ... + n = n(n+1)/2$$
 (formula)

Algorithms: Efficient vs Inefficient

Efficient algorithm: Takes time ≤ polynomial in length of input.

Sum 1 to $n \leftarrow$ Length of input n is $k = log_2 n$ bits (or $log_{10} n$ decimal digits).

Gauss' algorithm (multiplication) takes O(k2) steps.

Polynomial in input length

Inefficient algorithm: not polynomial-time.

Other students' algorithm takes about $n = 2^k_{\kappa}$ steps.

Exponential in input length

P vs NP

- P: Class of problems solvable by poly-time (efficient) algorithms Examples: sum 1 to n, multiplication of two numbers
- NP: "Non-deterministic polynomial-time"
 Class of problems that, if you guess a solution, you can verify it in polynomial-time (efficiently).

P vs NP

- P: Class of problems solvable by poly-time (efficient) algorithms

 Examples: sum 1 to n, multiplication of two numbers
- NP: "Non-deterministic polynomial-time"
 Class of problems that, if you guess a solution, you can verify it in polynomial-time (efficiently).
 - Example: Factoring (factor n into its prime factors)
 In **NP**: Given primes p and q, can check n = pq in poly-time.
 Not in **P** (we think): No poly-time algorithm to *find* p and q.
- P vs NP Question: Prove P ≠ NP (if that is the case)

 Big open problem in mathematics / CS (\$1 million prize)

Cryptography and P vs NP

Breaking public-key encryption (Is it in NP? In P?)

In NP: Guess randomness r used in key generation. Verify that r generates (pk, sk) where pk is public key. Decrypt with sk.

Hopefully not in P: Best breaking algorithms should take exponential time: time 2^{λ} , where λ is a "security parameter".

Ciphertexts "indistinguishable by efficient algorithms"

Secure public-key encryption exists only if $P \neq NP!$ Big unproven assumption!

"Provable Security"

In modern cryptography, we try to prove our cryptosystems secure based on a natural, plausible assumptions.

Example: For some encryption schemes, we can prove:

- If there is an efficient algorithm to break it,
- 2) Then there is an efficient algorithm to factor integers.

What assumptions are plausible and natural?

Good Assumption for Crypto? Factoring

Factoring: Given k-bit integer n, output a nontrivial factor of n.

Best-known algorithm: The "Number Field Sieve" takes $2^{O(k^{1/3} (\log k)^{1/3})}$ steps (sub-exponential in input length).

Quantum algorithm: Uses principles of quantum mechanics.

Quantum computers can factor in poly-time!! [Shor, 1993].

Quantum computers break most public-key cryptosystems in use!

Good Assumption for Crypto? Factoring

Factoring: Given k-bit integer n, output a nontrivial factor of n.

Best-known algorithm: The "Number Field Sieve" takes $2^{O(k^{1/3} (\log k)^{1/3})}$ steps (sub-exponential in input length).

Quantum algorithm: Uses principles of quantum mechanics.

Quantum computers can factor in poly-time!! [Shor, 1993].

Quantum computers break most public-key cryptosystems in use!

Fake News: Quantum computers often described as efficiently solving NP problems by "trying all possibilities in parallel".

Wrong! Quantum is powerful, but doesn't efficiently solve all NP problems.

Good Assumption for Crypto? Approximate-GCD

Greatest Common Divisor (GCD): Given integers n₁ and n₂, output their largest common factor.

Good Assumption for Crypto? Factoring

Factoring: Given k-bit integer n, output a nontrivial factor of n.

Best-known algorithm: The "Number Field Sieve" takes $2^{O(k^{1/3} (\log k)^{1/3})}$ steps (sub-exponential in input length).

Quantum algorithm: Uses principles of quantum mechanics.

Quantum computers can factor in poly-time!! [Shor, 1993].

Quantum computers break most public-key cryptosystems in use!

Fake News: Quantum computers often described as efficiently solving NP problems by "trying all possibilities in parallel".

Wrong! Quantum is powerful, but doesn't efficiently solve all NP problems.

Good Assumption for Crypto? Approximate-GCD

Greatest Common Divisor (GCD): Given integers n₁ and n₂, output their largest common factor.

Good Assumption for Crypto? Approximate-GCD

Greatest Common Divisor (GCD): Given integers n₁ and n₂, output their largest common factor.

Approximate Greatest Common Divisor (AGCD): Given many integers $n_i = q_i \cdot p + r_i$ with $|r_i|$ much less than p, output p. "Near-multiples" of p

Example: r_i is λ bits, p is λ^2 bits, q_i is λ^6 bits. (say, $\lambda = 100$.) Best known attacks: exponential in λ , even for quantum.

Approximate GCD, Exact Multiple Version: One of the n_i 's (say, n_0) is an exact multiple of p.

Approximate GCD, Decision Version: Decide whether the n_i's are near multiples of some p, or just random integers. (Try to guess correctly more than 50% of the time.)

A Public-Key Encryption Scheme

Good Assumption for Crypto? Approximate-GCD

Greatest Common Divisor (GCD): Given integers n₁ and n₂, output their largest common factor.

Approximate Greatest Common Divisor (AGCD): Given many integers $n_i = q_i \cdot p + r_i$ with $|r_i|$ much less than p, output p. "Near-multiples" of p

Example: r_i is λ bits, p is λ^2 bits, q_i is λ^6 bits. (say, $\lambda = 100$.) Best known attacks: exponential in λ , even for quantum.

Approximate GCD, Exact Multiple Version: One of the n_i 's (say, n_0) is an exact multiple of p.

Approximate GCD, Decision Version: Decide whether the n_i's are near multiples of some p, or just random integers. (Try to guess correctly more than 50% of the time.)

A Public-Key Encryption Scheme

Encryption Based on Approximate GCD

- Each ciphertext is a "noisy" multiple of secret integer p.
- The "noise" the offset from the p-multiple contains the message.
- If noise is "small", Alice recovers it as the remainder modulo p, and then recovers the message.
- If noise is too large, decryption is hopeless even for Alice.

A Symmetric Encryption Scheme

- Shared secret key: odd number p
- To encrypt a bit m in {0,1}:
 - Choose at random small r, large q
 - - Ciphertext is close to a multiple of p
 - m = parity of "noise" (distance to nearest multiple of p)
- To decrypt c:
 - Output m = (c mod p) mod 2

Making It Public-Key

- Secret key is odd p (as before)
- Public key pk consists of near-multiples of p
 - \square Polynomially many $n_i = q_i p + 2r_i$ with n_0 odd
- □ Enc(pk, m): $c \leftarrow [subset-sum(n_i's) + 2r + m] \mod n_0$
- Dec(sk, c): Output (c mod p) mod 2 (as before)

$$c = (2\sum_{i \in S} n_i) + 2r + m - k \cdot n_0$$
 for some small k

$$(c \ mod \ p) = (2 \sum_{i \in S} r_i) + 2r + m - k \cdot 2r_0$$

$$(c \bmod p) \bmod 2 = m$$

Proving Security

<u>Approximate GCD, Decision Version</u>: Decide whether integer n_i's are near multiples of some p, or just random integers. <u>Theorem</u>: If decision AGCD is hard, then the scheme is secure.

Intuition:

- Assume there is an adversary that breaks the scheme.
- Set public key to be the integers from the AGCD problem.
- \blacksquare Encrypt m_0 or m_1 with the public key.
- If public key is well-formed (near-multiples), adversary will distinguish whether m₀ or m₁ was encrypted.
- If public key is random (not near multiples), then the distribution Enc(pk, m) is statistically independent of m.

Homomorphic Encryption

Back to Homomorphic Encryption

Processing (Unencrypted) Data

- Forget encryption for a moment...
- How does your computer compute a function?
- Basically, by working on bits, 1's and 0's.
- Using bit operations for example,
 - \blacksquare AND $(b_1, b_2) = 1$ if $b_1 = b_2 = 1$; otherwise, equals 0.
 - \blacksquare AND $(b_1, b_2) = b_1 \times b_2$.
 - \square XOR $(b_1, b_2) = 0$ if $b_1 = b_2$; equals 1 if $b_1 \neq b_2$.
 - \blacksquare XOR $(b_1, b_2) = b_1 + b_2 \pmod{2}$

Computing General Functions

- [ADD,MULT] are Turing-complete (over any ring).
 - Take any (classically) efficiently computable function.
 - Express it as a poly-size circuit of ADD and MULT gates.

Example Circuit

Let's Do This Encrypted...

- Let b denote a valid encryption of bit b.
- Suppose we have a (homomorphic) encryption scheme with public functions E-ADD, E-MULT where:

$$E-MULT([b_1]b_2) = [b_1xb_2] E-ADD([b_1,b_2]) = [b_1+b_2]$$
 for any $[b_1]$ and $[b_2]$.

- Then we can ADD and MULT encrypted bits.
- Proceeding bit-wise, we can compute any function on encrypted data.

Encrypted Add and Mult

Simple Idea:

Just add or multiply ciphertexts

Let's Do This Encrypted...

- Let b denote a valid encryption of bit b.
- Suppose we have a (homomorphic) encryption scheme with public functions E-ADD, E-MULT where:

$$E-MULT([b_1]b_2) = [b_1xb_2] E-ADD([b_1,b_2]) = [b_1+b_2]$$
 for any $[b_1]$ and $[b_2]$.

- Then we can ADD and MULT encrypted bits.
- Proceeding bit-wise, we can compute any function on encrypted data.

Encrypted Add and Mult

Simple Idea: Just add or multiply ciphertexts

Why should it work for our approximate gcd scheme?

If you add or multiply two near-multiples of p,

you get another near-multiple of p

Adding and Multiplying Ciphertexts

- $c_1 = q_1p + 2r_1 + m_1$, $c_2 = q_2p + 2r_2 + m_2$ Noise: Distance to nearest multiple of p
- $c_1 + c_2 = (q_1 + q_2)p + 2(r_1 + r_2) + (m_1 + m_2) \mod n_0 (=q_0 p)$
 - \square Suppose $2(r_1+r_2)+(m_1+m_2)$ is still much smaller than p
 - $\rightarrow c_1 + c_2 \mod p = 2(r_1 + r_2) + (m_1 + m_2)$
 - \rightarrow (c₁+c₂ mod p) mod 2 = m₁+m₂ mod 2
- $c_1xc_2 = (c_1q_2+q_1c_2-q_1q_2)p+(2r_1+m_1)(2r_2+m_2) \mod n_0$

Noise

- \square Suppose $(2r_1+m_1)(2r_2+m_2)$ is still much smaller than p
- $\rightarrow c_1 x c_2 \mod p = (2r_1 + m_1)(2r_2 + m_2)$
- \rightarrow (c₁xc₂ mod p) mod 2 = m₁xm₂ mod 2

General Functions Homomorphically

- $c_1 = q_1p + 2r_1 + m_1, ..., c_t = q_tp + 2r_t + m_t$
- Let f be a multivariate poly with integer coefficients (sequence of +'s and x's)
- Compute $c = Eval(pk, f, c_1, ..., c_t) = f(c_1, ..., c_t) \mod n_0$ Suppose this noise is much smaller than p
 - \Box f(c₁, ..., c_t) = f(2r₁+m₁, ..., 2r_t+m_t) + qp
 - □ Then (c mod p) mod $2 = f(m_1, ..., m_t)$ mod 2

That's what we want!

Problem: Noise grows exponentially with f's degree

Wait - Why Bother with Noise at all?

- Try to use ring homomorphisms (without noise)
 - \square Ciphertexts and messages live in rings R_C and R_M.
 - \square Decryption is a ring homomorphism $D: R_C \to R_M$.
 - Homomorphic ops + and \times on ciphertexts in R_C induce + and \times on messages in R_M .
 - Security: Encryptions of 0 form an ideal in R_C.
 Secure only if "ideal membership problem" is hard.

Wait - Why Bother with Noise at all?

- Example [Polly Cracker by Fellows & Koblitz]:
 - Encryptions of m are polynomials that evaluate to m at some secret point s.
- Attacking Polly Cracker:
 - □ Case 1: The multivariate ciphertext polynomials can be represented over a polynomial-size monomial basis.
 - Ideal membership problem is easy. Solve using linear algebra.
 - Case 2: Well then how are ciphertext polynomials represented? (Ciphertexts must be compact.)

Bootstrapping: A Way to Refresh Noisy Ciphertexts

A Digression into Philosophy...

- Can the human mind understand itself?
 - Or, as a mind becomes more complex, does the task of understanding also become more complex, so that selfunderstanding it always just out of reach?
- Self-reference often causes problems, even in mathematics and CS
 - Godel's incompleteness theorem
 - Turing's Halting Problem

Philosophy Meets Cryptography

- Can a homomorphic encryption scheme decrypt itself?
 - □ If we run Eval(pk, Dec(·,·), c_1 , ..., c_t), does it work?
 - Suppose our HE scheme can Eval depth-d circuits:
 - Is it always true that HE's Dec function has depth > d?
 - Is Dec(·,·) always just beyond the Eval capacity of the HE scheme?

Bootstrapping: the process of running $Eval(\cdot,...,\cdot)$ on $Dec(\cdot,\cdot)$

Bootstrapping: What Is It?

So far, we can evaluate bounded depth funcs F:

Bootstrapping: What Is It?

So far, we can evaluate bounded depth funcs F:

 $f(m_1, m_2, ..., m_t)$

- We have a noisy evaluated ciphertext c.
- We want to get a less noisy c' that encrypts the same value, but with less noise.
- Bootstrapping refreshes ciphertexts, using the encrypted secret key.

Bootstrapping: What Is It?

- \square For ciphertext c, consider $D_c(sk) = Dec(sk,c)$
 - \square Suppose $D_c(\cdot)$ is a low-degree polynomial in sk.
- Include in the public key also Encpk(sk).

Homomorphic computation applied only to the "fresh" encryption of sk.

Bootstrappable Schemes

- Bootstrappable HE → Fully Homomorphic Encryption
- Can our integer-based HE scheme be bootstrapped?
 - Yes, after some tweaks.
- Known FHE schemes all use similar techniques
 - All use noise
 - All use bootstrapping
 - All rely on hardness of "lattice" problems

A Physical Analogy for Bootstrapping

- Alice gives worker multiple boxes, each with a copy of her key inside
- Worker assembles jewel inside box #1 for 1 minute.
- Then, worker puts box #1 inside box #2!
- With box #2's gloves, worker opens box #1 with key, takes jewel out, and continues assembling till box #2's gloves stiffen.
- And so on...

A Physical Analogy for Bootstrapping

- Alice gives worker multiple boxes, each with a copy of her key inside
- Worker assembles jewel inside box #1 for 1 minute.
- Then, worker puts box #1 inside box #2!
- With box #2's gloves, worker opens box #1 with key, takes jewel out, and continues assembling till box #2's gloves stiffen.
- And so on...

Speed of Computing on Encrypted Data on IBM's HElib Platform

Speed of Computing on Encrypted Data on IBM's HElib Platform

Example: Can compare two genome sequences with ~100,000 SNPs in 5-10 minutes