Homomorphic Encryption:
Manipulating Data while it is Encrypted

Craig Gentry
IBM T.J. Watson Research Center

“Homomorphic Encryption” at a High Level

A way to delegate processing of your dataq,
without giving away access to it.

Other Applications

-1 Private Google search
o Encrypt my query, send to Google
21 Google answers my query without seeing it

11 Google’s response is also encrypted

Other Applications

-1 Private Google search
Encrypt my query, send to Google
Google answers my query without seeing it

1 Google’s response is also encrypted
- Private online tax return preparation

- Encrypted artificial intelligence

Does Homomorphic Encryption

Seem Imeossible?

Actually, separating processing from access makes sense
even in the physical world...

An Analogy: Alice’s Jewelry Store

1 Workers assemble raw materials into jewelry

An Analogy: Alice’s Jewelry Store

-1 Workers assemble raw materials into jewelry

-1 But Alice is worried about theft

How can the workers process the raw materials without
having access to them?

An Analogy: Alice’s Jewelry Store

71 Alice puts materials in locked glovebox

' For which only she has the key
-1 Workers assemble jewelry in the box

-1 Alice unlocks box to get “results”

An Encryption Glovebox?

-1 Alice delegated processing without giving away access.

-1 But does this work for encryption?

2 Can we create an “encryption glovebox” to securely process
data while it remains encrypted?

The Homomorphism in HE

M = set of messages, C = set of ciphertexts

Ch = E?’LC(TH.),.“ E?)al(pk} f‘:r e)

Cy = Enc(my) Ct —_— 5
Dec(sk,-,...,") Dec(sk,)

f(:'!)

J\/l"5 —_— M ... m)

For any key, messages, ciphertexts, and function f, the order of f
and Decryption doesn’t matter: either way we get f(mq,...,my).

Public-Key Encryption

Public Key Encryption

+ Key Generation: Alice uses randomness to generate a key pair (pk, sk).
She publishes pk and keeps sk secret.

» Encryption: ¢ « Enc(pk, m) to get a ciphertext ¢ that encrypts message m.
» Decryption: m «— Dec(sk, ¢) to obtain m.

Security of Public-Key Encryption

- Semantic security: For any my # m,,
(Pk, Enc, (mg)) =~ (Pk, Enc,,(m;))

' ~ means indistinguishable by efficient algorithms.

-1 Any semantically secure encryption scheme must be
probabilistic — i.e., many ciphertexts per plaintext.

-1 But what does “indistinguishable by efficient algorithms”
mean?

Algorithms and Computational Hardness

Are You Smarter than a 5" Grader?

Whatis 1 + 2+ 3 + ...+ 1002

Are You Smarter than a 5™ Grader?

1 2 3 4 - 30
|

100 99 98 97 - 51
101 101 101 101 101 5050

50 Algorithm!
1+2+3+...+n=n(n+1)/2 (formula)

Algorithms: Efficient vs Inefticient

Efficient algorithm: Takes time < polynomial in length of input.

Sum 1 to n <« Length of input n is k = log,n bits
(or log,on decimal digits).

Gauss’ algorithm (multiplication) takes O(k?) steps.

Polynomial in
input length
Inefficient algorithm: not polynomial-time.

Other students’ algorithm takes about n = 2 steps.

"

Exponential in
input length

P vs NP

P: Class of problems solvable by poly-time (efficient) algorithms

Examples: sum 1 to n, multiplication of two numbers

NP: “Non-deterministic polynomial-time”

Class of problems that, if you guess a solution,
you can verify it in polynomial-time (efficiently).

P vs NP

P: Class of problems solvab

Examples: sum 1 to n, mu

e by poly-time (efficient) algorithms

tiplication of two numbers

NP: “Non-deterministic polynomial-time”

Class of problems that,

if you guess a solution,

you can verify it in polynomial-time (efficiently).

Example: Factoring (factor n into its prime factors)

In NP: Given primes p and g, can check n = pqg in poly-time.

Not in P (we think): No poly-time algorithm to find p and q.

P vs NP Question: Prove P # NP (if that is the case)
Big open problem in mathematics / CS ($1 million prize)

Cryptography and P vs NP

Breaking public-key encryption (Is it in NP2 In P?)
In NP: Guess randomness r used in key generation. Verify that
r generates (pk, sk) where pk is public key. Decrypt with sk.

Hopefully not in P: Best breaking algorithms should take
exponential time: time 2%, where A is a “security parameter”.

Ciphertexts “indistinguishable by efficient algorithms”

Secure public-key encryption exists only if P # NP!
Big unproven assumption!

“Provable Security”

In modern cryptography, we try to prove our cryptosystems
secure based on a natural, plausible assumptions.

Example: For some encryption schemes, we can prove:
1) If there is an efficient algorithm to break it,
2) Then there is an efficient algorithm to factor integers.

What assumptions are plausible and natural?

Good Assumption for Crypto? Factoring

Factoring: Given k-bit integer n, output a nontrivial factor of n.

Best-known algorithm: The “Number Field Sieve” takes

20(k!72 (log)'7) stens (sub-exponential in input length).

Quantum algorithm: Uses principles of quantum mechanics.
Quantum computers can factor in poly-time!l [Shor, 1993].

Quantum computers break most public-key cryptosystems in usel

Good Assumption for Crypto¢ Factoring

Factoring: Given k-bit integer n, output a nontrivial factor of n.

Best-known algorithm: The “Number Field Sieve” takes

20(k!/% (log k') stens (sub-exponential in input length).

Quantum algorithm: Uses principles of quantum mechanics.
Quantum computers can factor in poly-time!! [Shor, 1993].

Quantum computers break most public-key cryptosystems in usel

Good Assumption for Crypto?
Approximate-GCD

Greatest Common Divisor (GCD): Given integers n; and n,,

output their largest common factor.

Good Assumption for Crypto? Factoring

Factoring: Given k-bit integer n, output a nontrivial factor of n.

Best-known algorithm: The “Number Field Sieve” takes
20{k!/3

(log K)'/%) steps (sub-exponential in input length).

Quantum algorithm: Uses principles of quantum mechanics.
Quantum computers can factor in poly-time!l [Shor, 1993].

Quantum computers break most public-key cryptosystems in usel

Good Assumption for Crypto?
Approximate-GCD

Greatest Common Divisor (GCD): Given integers n; and n,,

output their largest common factor.

Good Assumption for Crypto?
Approximate-GCD

Greatest Common Divisor (GCD): Given integers n; and n,,
output their largest common factor.

Approximate Greatest Common Divisor (AGCD): Given
many integers n, = q;p+r, with [r;| much less than p, output p.

“Near-multiples” of p

Example: r, is A bits, p is A? bits, q, is A® bits. (say, A = 100.)
Best known attacks: exponential in A, even for quantum.

Approximate GCD, Exact Multiple Version: One of the n's
(say, ny) is an exact multiple of p.

Approximate GCD, Decision Version: Decide whether the

n’s are near multiples of some p, or just random integers.
(Try to guess correctly more than 50% of the time.)

A Public-Key Encryption Scheme

Good Assumption for Crypto?
Approximate-GCD

Greatest Common Divisor (GCD): Given integers n; and n,,
output their largest common factor.

Approximate Greatest Common Divisor (AGCD): Given
many integers n, = g, p+r, with |r;| much less than p, output p.

“Near-multiples” of p

Example: r, is A bits, p is A? bits, q, is A® bits. (say, A = 100.)
Best known attacks: exponential in A, even for quantum.

Approximate GCD, Exact Multiple Version: One of the n's
(say, ny) is an exact multiple of p.

Approximate GCD, Decision Version: Decide whether the
n’s are near multiples of some p, or just random integers.

(Try to guess correctly more than 50% of the time.)

A Public-Key Encryption Scheme

Encryption Based on Approximate GCD

S

71 Each ciphertext is a “noisy” multiple of secret integer p.

o The “noise” — the offset from the p-multiple — contains the
message.

o If noise is “small”, Alice recovers it as the remainder
modulo p, and then recovers the message.

o If noise is too large, decryption is hopeless even for Alice.

A Symmetric Encryption Scheme

1 Shared secret key: odd number p
1 To encrypt a bit min {0,1}:

Choose at random small r, large g

the “noise’ Noise much
O Qutputc=qgp +|2r + m «— smaller than P

u Ciphertext is close to a multiple of p

u m = parity of “noise” (distance to nearest multiple of p)

1 To decrypt c:
Output m = (¢ mod p) mod 2

Making It Public-Key

7 Secret key is odd p (as before)

o Public key pk consists of near-multiples of p
Polynomially many n, = qp + 2r;, with ny odd

7 Enc(pk, m): ¢ «— [subset-sum(ns) + 2r + m] mod n,

0 Dec(sk, ¢): Output (c mod p) mod 2 (as before)
c =(2Yesn) +2r+m — k- n, for some small k
(cmodp) =R2Yiecr;) +2r + m—k - 2r,
(cmodp) mod2 =m

Proving Security

Approximate GCD, Decision Version: Decide whether
integer n’s are near multiples of some p, or just random integers.

Theorem: If decision AGCD is hard, then the scheme is secure.

1 Intuition:

1 Assume there is an adversary that breaks the scheme.
' Set public key to be the integers from the AGCD problem.
Encrypt my or m,with the public key.

If public key is well-formed (near-multiples), adversary will
distinguish whether my or m; was encrypted.

If public key is random (not near multiples), then the
distribution Enc(pk, m) is statistically independent of m.

Homomorphic Encryption

Back to Homomorphic Encryption

The special
sauce!l

Enc,(x)
function f

Server

This could be (Cloud)

encrypted too.

Alice
(Input: data x, key k)
Enc,[f(x)]

f(X)

Processing (Unencrypted) Data

-1 Forget encryption for a moment...
1 How does your computer compute a function?
-1 Basically, by working on bits, 1’s and O’s.

o Using bit operations — for example,
o AND (b,, b,)=1 if b,=b,=1; otherwise, equals 0.
® AND (b,,b,) = b;xb,.
a XOR (b,,b,) =0 if b;=b,; equals 1 if b;#b,.
®m XOR (by,b,)= by;+b, (modulo 2)

Computing General Functions

-1 {ADD,MULT} are Turing-complete (over any ring).
o Take any (classically) efficiently computable function.

0 Express it as a poly-size circuit of ADD and MULT gates.

T1T2X3T4 X9 + T3 + X3T4

T T

/*7%
/\/\/\
L4

Exc:mple Circuit

Let’s Do This Encrypted...

o Let o denote a valid encryption of bit b.

-1 Suppose we have a (homomorphic) encryption scheme with
public functions E-ADD, E-MULT where:

E-MULT ([b,}b,]) = [py;xb] E-ADD(b],[b)) = [b;+b)]
for any b, pind -

-1 Then we can ADD and MULT encrypted bits.

-1 Proceeding bit-wise, we can compute any function on
encrypted data.

Encrypted Add and Mult

Simple ldea:
Just add or multiply ciphertexts

Let’s Do This Encrypted...

o Let o denote a valid encryption of bit b.

-1 Suppose we have a (homomorphic) encryption scheme with
public functions E-ADD, E-MULT where:

E-MULT ([b,}b,]) = [py;xb] E-ADD(b],[b)) = [b;+b)]
for any b, pind -

-1 Then we can ADD and MULT encrypted bits.

-1 Proceeding bit-wise, we can compute any function on
encrypted data.

Encrypted Add and Mult

Simple ldea:
Just add or multiply ciphertexts

Why should it work for our approximate gcd scheme?
If you add or multiply two near-multiples of p,
you get another near-multiple of p

Adding and Multiplying Ciphertexts

O G=qpt2rtmy, =qpt2rytm,

Noise: Distance to nearest mu

Jcpte, = (aptayp +

2(r,+r,) + (m,+m,)

tiple of p
mod ng(=¢op)

2 Suppose 2(r,+r,)+(m,+m,) is still much smaller than p
2>c,+tc, mod p = 2(r,+r,)+(m;+m,)
> (c,+c, mod p) mod 2 = m,;+m, mod 2

SRS Gl (ST-Phu- N

d,92)pt

Noise

(2r,+m,)(2r,+m,)| mod n,

1 Suppose (2r,+m,;)(2r,+m,) is still much smaller than p
=2 c,xc, mod p = (2r,+m,)(2r,+m,)

=» (¢, xc, mod p) mod 2 = m;xm, mod 2

General Functions Homomorphically

" —-SS..G-_———_—_———
0 ¢ = qpt2r;+my, ..., ¢,= q,p+2r,+m,

o Let f be a multivariate poly with integer coefficients
(sequence of +’s and x's)

- Compute ¢ = Eval(pk, f, ¢4, ..., ¢) = f(cy, ..., ¢) mod n,
Suppose this noise is much smaller than p

2 f(cy, veer) = ff(2r1+m,, weay 205 T4 qp

2 Then (¢ mod p) mod 2 = f(my, ..., m) mod 2

That’s what we want!

Problem: Noise grows exponentially with f's degree

Wait — Why Bother with Noise at all?

1 Try to use ring homomorphisms (without noise)
Ciphertexts and messages live in rings R- and R,,.
Decryption is a ring homomorphism D : R- = R,,.

2 Homomorphic ops + and X on ciphertexts in R induce
+ and X on messages in Ry,.

| Security: Encryptions of O form an ideal in R..
Secure only if “ideal membership problem” is hard.

Wait — Why Bother with Noise at all?

o1 Example [Polly Cracker by Fellows & Koblitz]:

o Encryptions of m are polynomials that evaluate to m at
some secret point s.

- Attacking Polly Cracker:

o Case 1: The multivariate ciphertext polynomials can be
represented over a polynomial-size monomial basis.
» |ldeal membership problem is easy. Solve using linear algebra.

01 Case 2: Well then how are ciphertext polynomials
represented? (Ciphertexts must be compact.)

Bootstrapping: A Way to Refresh
Noisy Ciphertexts

A Digression into Philosophy...

- Can the human mind understand itself?

Or, as a mind becomes more complex, does the task of
understanding also become more complex, so that self-
understanding it always just out of reach?

71 Self-reference often causes problems, even in
mathematics and CS

Godel’s incompleteness theorem

Turing’s Halting Problem

Philosophy Meets Cryptography

-1 Can a homomorphic encryption scheme decrypt itself?
o If we run Eval(pk, Dec(+,), ¢y, ..., ¢,), does it work?

Suppose our HE scheme can Eval depth-d circuits:
® Is it always true that HE’s Dec function has depth > d@

w Is Dec(+,) always just beyond the Eval capacity of the HE scheme?

-1 Bootstrapping: the process of running Eval(,...,) on Dec(:,’)

Bootstrapping: What Is 112

-1 So far, we can evaluate bounded depth funcs F:

Bootstrapping: What Is 112
LRSS

-1 So far, we can evaluate bounded depth funcs F:

7 We have a noisy evaluated ciphertext c.

We want to get a less noisy ¢’ that encrypts the same

value, but with less noise.

-1 Bootstrapping refreshes ciphertexts, using the
encrypted secret key.

Bootstrapping: What Is 112

]
0 For ciphertext ¢, consider D_(sk) = Dec(sk,c)

o Suppose D (') is a low-degree polynomial in sk.

0 Include in the public key also Enc,(sk).

New encryption of y,
with less noise.

_ Y _

¢’ | D(sk) = Dec(sk,c) =

\ Homomorphic computation applied .
only to the “fresh” encryption of sk.

Bootstrappable Schemes

-1 Bootstrappable HE — Fully Homomorphic Encryption

1 Can our integer-based HE scheme be bootstrapped?

Yes, after some tweaks.

-1 Known FHE schemes all use similar techniques

All use noise

All use bootstrapping

All rely on hardness of “lattice” problems

1 Alice gives worker multiple boxes, each with a copy of her key inside

A Physical Analogy for Bootstrapping

Worker assembles jewel inside box #1 for 1 minute.
.~ Then, worker puts box #1 inside box #2I

With box #2's gloves, worker opens box #1 with key, takes jewel out, and continues
assembling till box #2’'s gloves stiffen.

. And so on...

A Physical Analogy for Bootstrapping

r1 Alice gives worker multiple boxes, each with a copy of her key inside
Worker assembles jewel inside box #1 for 1 minute.
.1 Then, worker puts box #1 inside box #2I

0 With box #2's gloves, worker opens box #1 with key, takes jewel out, and continues
assembling till box #2's gloves stiffen.

1 And so on...

Speed of Computing on Encrypted Data
on IBM’s HElib Platform

100000000

10000000

1000000
100000
10000
1000
100

10

1

0.1

0.01
0.001
0.0001

infeéib\le

Seconds/bit

2010

\ \

Moore's law
Estimated amortized time
\ for computing a single bit
\\ operation on encrypted data
180
KN
=
1\."'\.
N
*""'"-.._
0.1 T~
0.01
--"'m]_:OOE‘OA'
| Yagr ~

h .

2011 2012 2013 2014

Speed of Computing on Encrypted Data
on IBM’s HElib Platform

100000000 N .. Moore’s law
10000000 i“fm"“l!*\
1000000 \ Estimated amortized time
100000 __ for computing a single bit
10000 = x“\ operation on encrypted data
1000 5>
. 1800,
100 &)
10 8 N\
1 - \“\
0.1 k.
0.01 el T
0.01
0.001 y *1.00E-04
0.0001 | i o | ~
2010 2011 2012 2013 2014

Example: Can compare two genome sequences with ~100,000 SNPs in 5-10 minutes

	slide02-0.63
	slide03-0.79
	slide04-0.71
	slide05-0.87
	slide06-0.84
	slide07-0.93
	slide08-0.82
	slide09-0.73
	slide10-0.92
	slide11-0.75
	slide12-0.90
	slide13-0.80
	slide14-0.73
	slide15-0.81
	slide16-0.65
	slide17-0.86
	slide18-0.86
	slide19-0.93
	slide20-0.81
	slide21-0.92
	slide22-0.89
	slide23-0.91
	slide24-0.90
	slide25-0.75
	slide26-0.75
	slide27-0.92
	slide28-0.66
	slide29-0.66
	slide30-0.87
	slide31-0.74
	slide32-0.84
	slide33-0.90
	slide34-0.82
	slide35-0.71
	slide36-0.60
	slide37-0.73
	slide38-0.84
	slide39-0.82
	slide40-0.93
	slide41-0.84
	slide42-0.93
	slide43-0.90
	slide44-0.84
	slide45-0.86
	slide46-0.88
	slide47-0.73
	slide48-0.81
	slide49-0.93
	slide50-0.86
	slide51-0.90
	slide52-0.91
	slide53-0.76
	slide54-0.85
	slide55-0.89
	slide56-0.90
	slide57-0.76
	slide58-0.85

