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Perhaps trying to predict the future is a bad idea

= Prediction is very difficult, especially if it's about the future.
— Nils Bohr, Nobel laureate in Physics

* Those who have knowledge, don't predict. Those who predict,

don't have knowledge.
— Lao Tzu, 6th Century BC Chinese Poet

* And yet, we successfully predict ...

— ... the weather days in advance
— ... the climate decades in advance
— ... eclipses centuries in advance

= Applied mathematicians know a lot about prediction.
— We call it time integration!
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What can we learn about prediction from
applied mathematicians?

= Key insight: Identify conservation laws or invariants that
constrain possible futures

= Methodology:

— Observe the past to learn invariants
— Then extrapolate them into the future
— Sprinkle in any foreseeable disruptions

= Goal: A principled framework for thinking about the future

= A good hockey player plays where the puck is. A great hockey

player plays where the puck is going to be.
— Wayne Gretzky

* A great researcher plays where the field is going to be.
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Invariants for scientific computing

1. Algorithms & models get more predictive, efficient & robust
— Precise path is uncertain, but this is at the core of our discipline
— Researchers in this room have played and will play a major role

* This is merely the scientific method. All scientific communities
stand on the shoulders of the giants who preceded them.

= But not every community gets the added boost of Moore’s Law

— Qur giants are riding an up escalator!

2. Computers get continually faster and bigger

— Path can be disruptive, e.g. vector-to-parallel transition

— Dennard scaling is over and Moore’s Law is ending, but there is a clear
path forward for at least the next decade
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Consequences of continually faster computers

* Independent from unforeseeable research advances, we
can continually do more and better simulations.

— Paradoxically, rapid change may make prediction easier!

= One decade’s frontier research questions become the
building blocks for the subsequent decade’s more
ambitious goals

= Approach:
— Propose a model
— Validate model against data

— Use validated model to predict
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Prehistory of scientific computing

= First SIAM Conference on Computational Science and
Engineering was held in 2000

= SIAM Activity Group on Computational Science & Engineering
was created later that year

= But clearly the field is much older than this
— Underlying PDEs formulated in the late 1800s and early 1900s
— Early computers and numerical computations in 1940s and 1950s

— Foundations of numerical methods and formulations established in
1950’s to 1970’s
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1980s: A focus on linear algebra

= Research foci:

— First edition of Golub/Van Loan (1983). Strong focus on matrix algorithms.
— Linear solvers were very active area of research

« Sparse direct methods were mature. Iterative methods were maturing. Multigrid
emerging.

— Significant developments in numerical discretizations

= Achievable simulation scope:

— 1D and 2D problems, simple geometries, usually single physics
= Computing paradigm: vector supercomputers

= Tools for understanding simulations: Simple graphs & plots
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1990s: the necessity of parallelism

= Research Foci:

— Parallel algorithms

+ We expected parallelism to generate lots of new algorithms, but parallelizing
the old ones turned out to be hard enough. Horst Simon (paraphrased)

— lterative and multigrid solvers — parallelizability & linear scaling essential
— Efficient and accurate forward simulation

» Achievable simulation scope:

— 2D and emerging 3D, more complex geometries, mostly single physics
— Fairly highly resolved

= Computing paradigm: commodity cluster parallelism

= Tools for understanding simulations:
— Rich 2D and 3D visualization frameworks emerging
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2000s: The rise of uncertainty quantification

= Research Foci:

— Forward simulations mature enough to be used as building blocks

— Early “Outer loop” challenges: optimization, uncertainty quantification,
etc.

— Emerging focus on software engineering

» Achievable Simulation Scope:

— Highly resolved, 3D with complex geometries, multi-physics

+ But closure models still essential for many phenomena

= Computing paradigm: massive, homogeneous parallelism

= Tools for understanding simulations:
— Sophisticated spatial & temporal visualization environments
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2010s: More complex landscapes

= Research Foci:

— Complex “outer loop”, e.g. model calibration, phase space analysis,
inverse problems

— Ensembles of simulations
— Emerging roles for data science and machine learning

= Achievable Simulation Scope:
— Optimal design, sensitivity & uncertainty analysis
— Emerging predictive simulation

= Computing paradigm: heterogeneous parallelism

= Tools for understanding simulations:

— Higher-level analysis tools, e.g. topological, or ensemble-focused
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Exemplar 1: Topological abstractions of turbulent
combustion simulations provide new insights
), N

= VVisualization of raw
combustion data

= Segmentation of extinction
and re-ignition regions

= Evolution of the features with
temporal events: birth, split,
merge, and death

Courtesy of Jackie Chen (SNL) & Timo Bremer (LLNL)
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Exemplar 2: Tools for ensemble analysis @ Sl
enable deeper understanding

Laboratories

Example HPC Ensemble Problem

— Tens-to-hundreds of thousands of HPC executions, each with
* 10 input parameters,

* 5 scalar outputs, Canonical Correlation Analysis (CCA)
» 8 outputs over time (time series), » Correlations between two sets of variables
+ 6Images, 5 movies (30s each) »  Sensitivity analysis, anomaly detection

— How do we efficiently perform parameter studies, sensitivity
analysis, validation & verification on petabytes of data?

Slycat™ Provides
iohte | : | d bekavi . : lati Time Series Clustering
— Insights into previously unsuspected behaviors in simulation + Time series similarily, shape filtering
models (relationships, anomalies). »  Map output variability to inputs, find outliers

— Multiple models with varying perspectives on the data.

— On-demand remote exploration of terabytes of results without
moving the data (reducing time/storage costs).

— Many-to-many correlations for sensitivity analysis.

— Ubiquitous web-based delivery for easy collaboration. Parameter Space Exploration
= Visual exploration, filtering, image/video retrieval
CﬂLHfES}’ of Pal Crossno ['&,NL‘] * Parameter studies, multi-objective optimization
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Advances outside our community can create
disruption and opportunities

= Demise of Moore’s Law will drive the need for new thinking on

computer architectures
— This will almost certainly impact algorithms and software engineering
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Advances outside our community can create
disruption and opportunities

= Demise of Moore’s Law will drive the need for new thinking on

computer architectures
— This will almost certainly impact algorithms and software engineering

= Emergence of data science and machine learning tools create

additional opportunities to make sense of our simulations
— But this will require substantial changes to our workflows, and will require
us to embrace a broader definition of scientific computing

= Exemplar 3: Machine learning from simulations provides new
insight into NIF capsule design

— Following slides courtesy of Luc Peterson and Brian Spears (LLNL)
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To compress the capsule and fuel, indirect-drive ICF on
NIF fires lasers into a hohlraum to form an x-ray drive

235 inner beams
- , outer beams
\ L ' \
Hohlraum is filled with helium Y
gas to permit cryogenic layering A NG

— - :

. 1 | "1

and to control interior wall Cvlindrical
expansion as lasers deposit h);::rarll.lcr:

energy “—

=

Spherlcal CﬂDSU|e
and fuel
Slide: L. Berzak Hopkins FOpP——
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Round, symmetric implosion - critical challenge
for ICF

tent

N

Highly efficient, highly
symmetric simulated

High-resolution

1D implosion ity fuliras: postshot

500 zones 400,000,000 zones simulation of

% E,.F':#ut“ runtime Slide: L. Berzak Hopkins ?lr::nﬁ;urguntima NIF experiment
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Idea: create and analyze a large database of ICF
simulation data

= Varied 9 parameters

P1 ) P4
— Time-varying drive asymmetry \ P
« Constant Legendre Modes P1, P4
+ Time-varying P2

— Time-varying drive amplitude
— Capsule gas fill density

= Successfully completed 60k 2D simulations
» 39 Million CPU Hours on Trinity at LANL
= 5 PB Raw Data, 100 TB Processed & Zipped

» First chunk of data took ~2 months to get from LANL to LLNL
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Optimization of surrogates found a robust,
ovoid implosion

Key Features

. Time-Varying P2 Drive Oval Fuel Shape at Stagnation
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Surrogates: The ovoids are a family of robust

implosions
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New HYDRA Simulations Confirm Surrogate’s Prediction:
Optimum is a high-yield ovoid (16.6 M))

Burn-Off Configuration at Peak Energy Production
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In the ovoid, fuel flows in on the equator, burns, leaves via the poles
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In planetary atmospheres and magnetic fusion,
these flows are ‘zonal flows’

Flows in Jupiter’s Core Tokamak Turbulence Suppression

« Arise in inverse-cascade
systems

 Energy can move from
small to large scales

= Zonal flows can shear
away smaller fluctuations,
reduce radial convective
transport

F. H. Busse, Chaos 4, 123 (1994)

Candy et al GYRO, General Atomics

Zonal flows can suppress turbulent transport by feeding on and shearing away smaller scales

New science can be discovered by applying machine learning
to a large ensemble of simulations

Lawrence Livermore National Laboratory UNCLASSIFIED N l‘% 20

LLHL-PRES-TI5150

Wt et i o i &



Prediction I: Today’s research capabilities as
building blocks for more ambitious goals

1. We will be able to generate ensembles of high-quality simulations
— New abstractions and machine learning tools will be essential to making
sense of this data
— New workflows coupling different styles of computation

— Numerous applications including

. Better exploration of parameter space for margin analysis and design
optimization — applications in material science, drug design, etc.

. Automated design from functional specifications

‘ Emerging applications involving stochastic or complex systems, e.g. biology

* Numerous research directions

— PDE-constrained machine learning, uncertainty & robustness in machine
learning, new UQ & optimization methods, data+simulation workflows, etc.
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Prediction II: Same things faster

2. We will be able to do existing simulations much faster and
more robustly

— This will allow for simulations in real-, or faster than real-time

— Add observation data to constrain simulation

— Numerous applications including
. Computational steering of physical experiments
- Vary parameters for better data

- Terminate early if going awry or data sufficient — allow for better facility utilization

’ Better control of dynamical systems, e.g. power-grid resilience

= Numerous research directions

— New workflows, data-constrained simulations, hew opportunities in
experimental design, etc.
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Prediction lll: Outside advances create new
opportunities — foreseeable disruptions

3. Machine learning will become a tool within our simulations

— Use machine learning to improve our semi-empirical models, e.g.
* Force fields in molecular dynamics

« Parameterized material or constitutive models, etc.
— Decision making for poly-algorithms

« E.g. adaptive meshing, mesh untangling, nonlinear solver parameters, etc.

= Numerous research directions

— Machine learning algorithms for scientific problems, data-driven
modeling, etc.
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Caveats

= Not everything is predictable

— Conservation laws are necessary but not sufficient for prediction
— The evolution of science has ill-conditioned and chaotic elements

= There remain opportunities for game-changing research ideas

— E.g. processing in memory, randomized algorithms, quantum simulation...

= |t’s important to pay attention to other potential external
disruptors
— Post-Moore’s Law computing paths & algorithmic implications
— Ongoing revolution in machine learning
— Others?
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