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Tensors in Machine Learning

Theory

“Tensors are the best thing
since sliced bread”
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* Analog exists for tensors: Tensor decomposition is the
decomposition of a tensor in terms of rank-1 tensors--

I' = E wia; ® b; ® ci;w; € R;ay, b, ¢; € R
1€ (k)

.

. : 47,
7 Y/ Vo y
al M

t'.|| h'.'- + I-]h'

|

o

i ] i



The Theoretical Power of Tensor Decomposition

* Understand data matrix <--> understanding its low rank structure
(singular values, singular vectors etc.)

* Analog exists for tensors: Tensor decomposition is the
decomposition of a tensor in terms of rank-1 tensors--
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* Even better than matrix decompositions: if factors linearly
independent, then decomposition UNIQUE (not just up to rotation).



Many Applications of Uniqueness

Uniqueness of (low-rank) tensor factorization can be leveraged in
many settings to give provable parameter recovery:



Many Applications of Uniqueness

Uniqueness of (low-rank) tensor factorization can be leveraged in
many settings to give provable parameter recovery:

* Learning latent variable models, such as topic modeling, mixture
models (e.g. Mossel/Roch’06, Anandkumar/Ge/Hsu/
Kakade/Telgarsky 14, Ge/Huang/Kakade’15]

« Community detection [e.g. Brubaker/Vempala’09,
Anandkumar/Ge/Hsu/Kakade’13]

* Training neural networks [Janzamin/Sedghi/Anandkumar’15]
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Tensors in Machine Learning

Theory Practice
“Tensors are the best thing Growing applications, but
since sliced bread” have not [yet] realized their

potential, given the theory.

(Particularly for large-scale
settings)

Why is this the case?

a) Tensors are inherently not useful in some practical

settings (e.g. for many settings, matrix methods
work just as well, or better)?

b) Information theoretic difficulties: e.g. datasets
not large enough to fill out extra dimensions?

¢) We need better algorithms to utilize their full
potential.
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We need better algorithms ta utilize their full
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Why is this the case?

a) Tensors are inherently not useful in some practical
settings (e.g. for many settings, matrix methods
work just as well, or better)?

b) Information theoretic difficulties: e.g. datasets
not large enough to fill out extra dimensions?

c) We need better algorithms to utilize their full
potential.




Our contribution

We propose a new algorithm -- Orthogonalized ALS -- which is:

1. Computationally efficient and conceptually simple
2. Has fairly strong theoretical guarantees

3. Seems to work well in practice



So what’s the challenge?

Recovery still not well understood:
* Worst-case, most tensor problems NP-hard [Hastad’90, Hillar/Lim '13]
* Only starting to understand theory of efficient/robust recovery



So what’s the challenge?

Recovery still not well understood:

* Worst-case, most tensor problems NP-hard [Hastad’90, Hillar/Lim '13]

* Only starting to understand theory of efficient/robust recovery

— Orthogonal tensor decomposition [Kolda’01, Anandkumar/Ge/Hsu/
Kakade/Telgarsky ‘14, Robeva/Seigal’16]

— Analysis of tensor power method [Anandkumar/Ge/Janzamin’14]
— For tensors with random factors (rank) k ~ (dimension) d*> [Ma/Shi/Steurer’16]

* So far, most theoretically sound algorithms are impractical for large-scale
settings.

* Practically viable heuristics have demonstrably poor performance in many
settings.



Practical Desiderata:
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* Must be noise stable — simultaneous diagonalization based method
(Harshman’70) too sensitive



Practical Desiderata:

* Must be noise stable = simultaneous diagonalization based method
(Harshman’70) too sensitive

* Must be able to exploit sparsity in the tensor (e.g. tensor of word tri-
occurrences might be 50k x 50k x 50k, but will be very sparse)
[“deflation”-based methods too expensive in practice]

* Should work well even if factors have highly non-uniform weights
(e.g. power-law decay).

* Should have runtime that is very low-degree polynomial... [no d*
linear systems, 1/d° probability of success, or expensive
initializations]



ALS: Practically Feasible Candidate



ALS: Practically Feasible Candidate

Alternating Least Squares (ALS)
* Initialize factors randomly {A},{B },{C}

* iteratively fix 2 of 3 sets of factors, optimize 3" set: e.g. fix {A} and {B,} and
find {C.} to minimize

IT-2. A @B & C || (objective function)
(least-squares problem!!)



ALS: Practically Feasible Candidate

Alternating Least Squares (ALS)
* Initialize factors randomly {A},{B},{C}

* iteratively fix 2 of 3 sets of factors, optimize 3" set: e.g. fix {A} and {B,} and
find {C.} to minimize

IT—2. A @B & C || (objective function)
(least-squares problem!!)

ALS is “workhorse” of tensor methods in practice
« Computationally efficient (many optimized packages, e.g. Tensor Toolbox)
* Often gets stuck in bad local optima



ALS: Practically Feasible Candidate

Key Issue:

Local optima arise when multiple estimated factors
all chasing after the same true factors.

For tensors with skewed weights, large weight factors
much more attractive than low-weight factors.



“Orthogonalized™ ALS

Idea: Periodically orthogonalize recovered factors
(Note: returned factors will not necessarily be orthogonal)



“Orthogonalized™ ALS

|ldea: Periodically orthogonalize recovered factors
(Note: returned factors will not necessarily be orthogonal)
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Motivation: Finding eigenvectors of a matrix
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To find the largest eigenvector: just use matrix power method
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To find the largest eigenvector: just use matrix power method

To find the second largest eigenvector:
Need to project orthogonal to first eigenvector after power method step



Motivation: Finding eigenvectors of a matrix

To find the largest eigenvector: just use matrix power method

To find the second largest eigenvector:
Need to project orthogonal to first eigenvector after power method step

Orthogonalization prevents multiple recovered
factors from chasing the same original factors



A simulation



A simulation

Consider a symmetric rank 2 tensor in 2 dimensions: T € RX<X<

T=A1®A1®A1+A2®A2®Ag

Recovered tensor:

)

F'=X19X10 X1+ Xo® Xo® Xo



ALS Step

Note: returned factors not necessarily orthogonal!!




Lots of variants possible:

“Hybrid-ALS”: orthogonalize for first few iterations,
then switch to normal ALS.




Guarantees for Orthogonalized-ALS



Guarantees for Orthogonalized-ALS

Theorem (informal): Orthogonalized ALS recovers

the true factors under reasonable conditions, with
random initialization, extremely quickly!




Guarantees for Orthogonalized-ALS

Theorem: Given d dimensional rank k tensor,
T=Z,wA ® A ® A, let c=max; ;| <A, A>| and g=max;,(w;/w,).
If cg < 1/k* then Orth-ALS recovers factors in

O(klog k + kloglog d) steps whp if initialized randomly from unit
sphere:| | 4,— A;| | < k¥2max(c,1/d)




Guarantees for Orthogonalized-ALS

Theorem: Given d dimensional rank k tensor,

T=2Z,wA ® A ® A, let c=max; ;| <A, A>| and g=max;,(w;/w,).

If cq < 1/k? then Orth-ALS recovers factors in

O(klog k + kloglog d) steps whp if initialized randomly from unit

sphere:| | A —A,| | < kY2 max(c,1/d)

Corollary: Orth-ALS recovers factors for random
d dimensional tensors, if rank k = O(d%/4)




Guarantees for Orthogonalized-ALS

Theorem: Given d dimensional rank k tensor,
T=Z,wA ® A ® A, let c=max; ;| <A, A>| and g=max;(w;/w,).
If cq < 1/k? then Orth-ALS recovers factors in

O(klog k + kloglog d) steps whp if initialized randomly from unit
sphere:| | A —A4,| | < kY2 max(c,1/d)

As consequence of analysis, also can show
improved convergence of Tensor Power
Method (for incoherent tensors)



Guarantees for Tensor Power Method

Theorem: For random tensor in d dimensions with
rank k < d, whp over random initialization, Tensor

Power Method converges to one of the true factors
after log log d iterations.

Previous results [Anandkumar/Ge/Janzamin] showed
local convergence with a special SVD initialization,
and a linear convergence rate ( log d iterations )
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Synthetic Data:
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Synthetic Data:
e Random low-rank tensors

— Uniform weights and geometrically spaced decaying weights
— Noiseless, and with independent Gaussian noise.



Practical Evaluation

Synthetic Data:
e Random low-rank tensors

— Uniform weights and geometrically spaced decaying weights
— Noiseless, and with independent Gaussian noise.

Real-world data:

* Computing word embeddings from 1.5B word English
Wikipedia corpus.

* Evaluation of embeddings on semantic tasks (analogies,
and word similarity tasks).



Recovering Random Low-Rank Tensors
Problem: Given rank k tensor T, recover rank k tensor T*

Evaluation metric: Normalized error = |IT-T*|I./IITIl,



Recovering Random Low-Rank Tensors
Problem: Given rank k tensor T, recover rank k tensor T*

Evaluation metric: Normalized error = |IT-T*|I./IITIl;
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Recovering Random Low-Rank Tensors
Problem: Given rank k tensor T, recover rank k tensor T*

Evaluation metric: Number of factors successfully recovered
(e.g. “recovered” if correlation > 0.9)
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Recovering Random Low-Rank Tensors
Problem: Given rank k tensor T, recover rank k tensor T*

Evaluation metric: Number of factors successfully recovered

(e.g. “recovered” if correlation > 0.9)

Hybnd=ALSS
Qrih=ALS

Hybrid=AL S/
s Orth=ALS/
Sim=Diag
= = ALG-GVD
wem ALD
TPM=5VD TPM
TPM sim=Ding

= = ALG=HVD
wom ALY
TPM=8VD

No of factors recovered

n

-
- |

10 100 1000 10 100
Ratio of weights Ratio of weights

Noiseless case With Gaussian Noise
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Word Embeddings

Goal: map words to vectors (typically dim<500) such that
geometry encodes semantics.



Word Embeddings

Goal: map words to vectors (typically dim<500) such that
geometry encodes semantics.

Usual approach is to take word co-occurrence matrix and factor it.
We consider taking a word tri-occurrence 3-tensor and factorizing it.
Evaluated via performance on downstream tasks.



Word Embeddings

Evaluate extent to which geometry encodes semantics via
similarity, or analogy tasks:

Similarity Analogy
Q: Which are more similar, (beach, surf) or Italy:Rome as France: ?
(beach, rain)? ltaly France

surf . Rome N Paris

beach rain

A: is cosine-sim{beach,surf)
> cosine-sim(beach,rain)?



Word Embeddings

_Algorithm | Similarity Tasks | Analogy task
WordSim Mixed Syntactic
analogies analogies

Vanilla ALS 0.44 0.51 30.22% 32.01%

Orth-ALS 0.56 0.60 45.87% 47.13%

Matrix 0.59 0.68 54.29% 62.20%
SVD

Orthogonalized ALS much better than vanilla ALS.
Significant gains just by using better factorization algorithm.

Still not competitive with matrix methods, but step in right direction...
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