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What do we want to know about mixing?

How do we know we are doing well at mixing?

How do we improve our mixing performance through
stirring?

What is the effect of diffusion on mixing?




Setup of the problem:

Advection-diffusion equation:
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Question: What velocity field
mixes well?
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we measure mixing?




How do we measure mixing?
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For energy constraint without diffusion,

perfect mixing in finite time is possible.
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For enstrophy constraint without diffusion,
perfect mixing in finite time is not possible.
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Local-in-time (LIT) optimization:
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Instantaneous flow intensity budget constraints:
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(enstrophy) / dx |Vu|? = T'*L
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A Shell
Model for
Mixing
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Abstract What is the maximum mixing efficiency of an incompressible flow? To




PDE
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Local-in-time optimization
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Local-in-time optimization without
diffusion
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(D) Energy constraint : state vector ¢

|— 60— — by —— 0 —— 6
/’\‘ //\\
/ \/ \
/ LA
\\ / / \ \
\\ / \
\/,/ \‘\
t ty t3 ty s to
time ¢
s (E) Energy constraint : control vector u
‘ Uy — — Ug U3 —-—-Uy Us
M —_—
;
0.5 :
|
0 1
ty to t3 ty t5 tx
time ¢
s (F) Energy constraint : mix-norm
O
‘ ——|0]|»-1 —-—- Lower bound

by 15 oo

to t3
time ¢



Local-in-time optimization with diffusion




What is the K K
Batchelor scale? b T U
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0.9 Small-scale variation of convected quantities like
' temperature in turbulent fluid
Part 1. General discussion and the case of small conductivity
0.0 4 By G. K. BATCHELOR

' () (] () 2 Cavendish Laboratory, University of Cambridge
(Received 1 Juno 1958)

When some external agency imposes on a fluid large-scale variations of some
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We are interested in the following optimization problem:

d
in—||0(-. )%,
min —[6( -, #)[3

subject to the constraints
8t<9—|—uV9:/1A6

with
V-u=0

and the flow intensity is constrained by a fixed enstrophy
/dda;dt\Vu\z = T?L°,

or energy

/dda;dt\u\z = U%L".
In addition, we are provided with initial data

Q(X, O) = H()(X).
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For the enstrophy-bounded flow problem, we choose:
e the length scale L
e the velocity scale LI', and
e the time scale 1/I".
For the energy-bounded flow problem, we choose
e the length scale L
e the velocity scale U, and
e the time scale L/U.

Both scalings produce the following form of the advection-diffusion equation,

00 1

2 .
where Pe = % for the enstrophy-constrained case and Pe = % for the
energy-constrained case. The non-dimensional flow constraints become
|Vul[z2 =1 or ||ul|z: = 1.
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The optimal velocity fields are given instantaneously for the enstrophy case by
(in non-dimensional form)

—AIP(OVA~LH)
(IVTIP(OVA=L9)[2)1/2

u =

and for the energy case by

where

P(OVA~10)
(IP(OVA=LH)[2)1/2

u =

e The operator A~! acting on p returns the solution ¢ of A¢ = p.

e [P is the dij

e (-) is a spal
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With Diffusion (Pe = 2048)
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Pe = o0
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A(t)
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H~! norm )\F —
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Lower bounds on Mix-norm for L°° bounded flows

Bounded rate-of-strain ||Vul|p~ =1

V015 > |V o 2 exp [—t

Bounded speed ||u||p~ =1
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Conclusion

* Shell model shows similarities to PDE.

* LIT optimization of PDE demonstrated the
impact of the Batchelor scale on the mixing rate.
Diffusion can negatively affect the mixing rate in
some cases!



