Signature of Optimal Solutions in Turbulent Rayleigh-Bénard Convection

David Sondak, Pavathi Kooloth, Leslie Smith

July 12, 2018

Outline

- Introduction
- 2 Review of Optimal Solutions
- 3 Signature of Optimal Solutions
- 4 Conclusions

Motivation

nasa.gov

Discovery Channel

wikimedia.org

Governing Equations I

We consider the Boussinesq equations:

$$\nabla \cdot \mathbf{u} = 0$$

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla P + \nu \nabla^2 \mathbf{u} + \alpha_V T g \hat{\mathbf{y}}$$

$$\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T = \kappa \nabla^2 T$$

 $\mathbf{u}(\mathbf{x},t) = (u, v, w)$: velocity field $T(\mathbf{x},t)$: temperature field

ν: kinematic viscosity κ: thermal diffusivity

 α_V : Coefficient of volume expansion

Governing Equations II

From the Boussinesq equations we:

- **1** Eliminate pressure with $\nabla \times \nabla \times$ of momentum equation;
- 2 Project momentum equation onto \hat{y} ;
- **3** Consider flows such that w = 0 and $\partial_z(\cdot) = 0$.

$$\frac{\partial \nabla^2 v}{\partial t} + \partial_x \left(u \nabla^2 v - v \nabla^2 u \right) = v \nabla^2 \nabla^2 v + g \alpha_V \partial_x^2 T$$

$$\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T = \kappa \nabla^2 T$$

$$\partial_x u + \partial_y v = 0$$

Nondimensionalization I

Introduce the non-dimensionalizations,

$$T^* = T/(\Delta T/2)$$
, $\mathbf{x}^* = \mathbf{x}/h$, $\mathbf{u}^* = \mathbf{u}/(h/t_f)$, $t^* = t/t_f$ $t_f = h/g'$, $g' = g\alpha_V\Delta T/2$

The resulting nondimensional equations are

$$\frac{\partial \nabla^2 v}{\partial t} + \partial_x \left(u \nabla^2 v - v \nabla^2 u \right) = \nu_* \nabla^2 \nabla^2 v + \partial_x^2 T$$

$$\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T = \kappa_{\star} \nabla^2 T$$

$$\partial_x u + \partial_y v = 0$$

Dimensionless diffusivities are given by

$$v_{\star} = \frac{v}{g'\sqrt{h^3}}, \quad \kappa_{\star} = \frac{\kappa}{g'\sqrt{h^3}}.$$

Non-exhaustive Review of Results

- Variational approaches and rigorous bounds
 - Howard (1963), $Nu \sim \left(\frac{Ra}{248}\right)^{3/8}$; Busse (1969), $Nu \sim Ra^{1/2}$
 - Constantin and Doering (1990s), $Nu \le 0.167Ra^{1/2} 1$; Whitehead and Doering (2011), $Nu \le 0.2295Ra^{5/12}$ [free slip], ...
- Statistical turbulence theory
 - Kraichnan (1962), Nu ~ Pr^γRa^{1/2} × log corrections [ultimate regime]; Shraiman and Siggia (1990); Nu ~ 0.27Ra^{2/7}Pr^{-1/7}; Grossman-Lohse theory (2000s); . . .
- Computational studies
 - Amati (2005), $Nu \sim Ra^{1/3}$; Verzicco (2003), $Nu \sim Ra^{0.309}$; Zhu (2018), transition to ultimate regime in 2D RBC; . . .
- Experimental studies
 - Niemela (2000), Nu ~ Ra^{0.34}; He (2012), transition to ultimate regime;

. . .

Exact Coherent Structures

- Scaling laws have generally been derived through variational principles:
 - The goal is to maximize Nu;
 - Nu has a functional dependence on integral quantities derived from the Boussinesq equations;
 - Constraints include boundary conditions and incompressibility.
- We wish to maximize Nu subject to the full Boussinesq equations in addition to the usual constraints:
 - Solve the full Boussinesq equations numerically;
 - Find steady (possibly unstable) states;
 - Determine Nu (Ra, Pr) for these states.

Exact Coherent Structures

- We wish to maximize Nu subject to the full Boussinesq equations in addition to the usual constraints:
 - Solve the full Boussinesq equations numerically;
 - Find steady (possibly unstable) states;
 - Determine Nu (Ra, Pr) for these states.
- Example of a non-optimal structure:

Optimal Exact Coherent Structures

- Vary the horizontal wavenumber
 (α) of solutions
- The domain size is $L = \frac{2\pi}{\alpha}$
- This selects the horizontal size of the structures
- Optimize Nu over α

- Small $\alpha \Rightarrow$ Larger scales
- Large $\alpha \Rightarrow$ smaller scales

Nusselt Scaling with Ra and Pr

Summary of Scaling Results

- Numerically solved the full 2D Boussinesq equations
- Optimal solutions to the Boussinesq equations follow $Nu \sim Ra^{0.31}$ up to $Ra = 10^9$
- **3** Pr- dependence of Nu-Ra scaling is very weak for Pr>1

- Significant Pr— dependence in lengthscales giving rise to optimal solutions
- **6** Fluids with $Pr \leq 7$ require larger horizontal lengthscales to optimize vertical heat transport
- 6 Fluids with Pr > 7 require smaller horizontal lengthscales to optimize vertical heat transport

$Ra = 10^8$: Pr = 1, Pr = 7, Pr = 10

Searching for Signatures

Searching for Signatures

Boundary Layer Scaling: Pr = 100

Optimal Solution at $Ra = 5 \times 10^6$, Pr = 7

Superposition of Optimal and Turbulent Solutions

Superposition of Optimal and Turbulent Solutions: Zoomed

Alignment of Optimal and Turbulent Solutions

Summary

- Computed optimal solutions that optimize heat transport in 2D Rayleigh-Bénard convection
- 2D optimal solutions are consistent with rigorous theory
- 2D optimal solutions are in good agreement with results from 3D turbulence theory and computation
- The exact optimal solutions don't appear in the turbulent flow, but some key characteristics are observed
- A maximally aligned optimal solution and turbulent solution have correlation of ≈ 0.95 .

Summary

- Computed optimal solutions that optimize heat transport in 2D Rayleigh-Bénard convection
- 2D optimal solutions are consistent with rigorous theory
- 2D optimal solutions are in good agreement with results from 3D turbulence theory and computation
- The exact optimal solutions don't appear in the turbulent flow, but some key characteristics are observed
- A maximally aligned optimal solution and turbulent solution have correlation of ≈ 0.95 .

Current and Future Work

- Extension to 3D
 - 3D optimal solutions
 - Signature of 2D optimal solutions in 3D data
- Incorporate rotation
- Stability analysis
- Software development