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Governing Equations |

We consider the Boussinesq equations:
V-u=20

%vLu-Vu = —VP++vV%u + ay Tgy

oT

YT = kV-T
Ot

u(x,t)=(u, v, w): velocity field T (x, t): temperature field
v: kinematic viscosity <. thermal diffusivity

xy: Coefficient of volume expansion




Governing Equations ||

From the Boussinesq equations we:
® Eliminate pressure with V x Vx of momentum equation;

® Project momentum equation onto Y;

©® Consider flows such that w =0 and 0, (-) = 0.

OV2v
ot

F Oy (uVev —vV2u) = vW2V4v + gay 05T

oT

_ L u-VT = kKVAT
ot

Oxu—+0yv = 0




Nondimensionalization |

¢ Introduce the non-dimensionalizations.

T* = T/(AT/2), x*=x/h, u* =u/(h/ts), t*=t/tf

tr =h/g', g =gu,AT/2
e The resulting nondimensional equations are
oV?2v
dt

-0y (uVPv —vV2u) = v, V2V2v + 02T

oT ,
- u-VT = k.V*T
Ot

Oxu+0y,v = 0

e Dimensionless diffusivities are given by




Non-exhaustive Review of Results

e \ariational approaches and rigorous bounds
)3/8

» Howard (1963), Nu ~ (E—‘?% . Busse (1969), Nu ~ Ra'/?

» Constantin and Doering (1990s), Nu < 0.167Ra'/? — 1; Whitehead
and Doering (2011), Nu £ 0.2295Ra>/? [free slip], ...

e Statistical turbulence theory

« Kraichnan (1962), Nu ~ PrY Ra'/? x log corrections [ultimate
regime]; Shraiman and Siggia (1990); Nu ~ 0.27Ra%/"Pr—1/7;
Grossman-Lohse theory (2000s); . ..

e Computational studies

* Amati (2005), Nu ~ Ral/3: Verzicco (2003), Nu ~ R3%-309. Zhy
(2018), transition to ultimate regime in 2D RBC; . ..

e Experimental studies
» Niemela (2000), Nu ~ Ra®34; He (2012), transition to ultimate regime;




Exact Coherent Structures

e Scaling laws have generally been derived through variational
principles:
» The goal is to maximize Nu;

¢ Nu has a functional dependence on integral quantities derived from the
Boussinesq equations;

» Constraints include boundary conditions and incompressibility.

e \We wish to maximize Nu subject to the full Boussinesq equations in
addition to the usual constraints:

» Solve the full Boussinesq equations numerically;
» Find steady (possibly unstable) states;

» Determine Nu (Ra, Pr) for these states.




Exact Coherent Structures

e We wish to maximize Nu subject to the full Boussinesq equations in
addition to the usual constraints:

» Solve the tull Boussinesq equations numerically;

» Find steady (possibly unstable) states;

o Determine Nu (Ra, Pr) for these states.

e Example of a non-optimal structure:
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Optimal Exact Coherent Structures

Vary the horizontal wavenumber
() of solutions

27T

The domain sizeis L = —
X

This selects the horizontal size
of the structures 2 ! 6 3 10

o

Optimize Nu over & e Small o = Larger scales

e Large o = smaller scales




Nusselt Scaling with Ra and Pr
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Summary of Scaling Results

® Numerically solved the full 2D
Boussinesq equations

® Optimal solutions to the

Boussinesq equations follow
Nu ~ Ra%3! up to Ra = 10°

® Pr— dependence of Nu— Ra

scaling is very weak for Pr > 1

O Significant Pr— dependence in
lengthscales giving rise to
optimal solutions

O Fluids with Pr < 7 require
larger horizontal lengthscales to
optimize vertical heat transport

® Fluids with Pr > 7 require
smaller horizontal lengthscales
to optimize vertical heat
transport




Ra=10% Pr=1 Pr=17, Pr=10




Searching for Signatures

=== (Optimal

— ' Turbulent

I I
100 200




Searching for Signatures
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Boundary Layer Scaling: Pr = 100
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Optimal Solution at Ra =5 x 10° Pr =7
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Superposition of Optimal and Turbulent Solutions
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Alignment of Optimal and Turbulent Solutions
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Summary

Computed optimal solutions that optimize heat transport in 2D
Rayleigh-Bénard convection

2D optimal solutions are consistent with rigorous theory

2D optimal solutions are in good agreement with results from 3D
turbulence theory and computation

The exact optimal solutions don't appear in the turbulent flow, but
some key characteristics are observed

A maximally aligned optimal solution and turbulent solution have
correlation of ~ 0.95.
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Current and Future Work

Extension to 3D
* 3D optimal solutions

» Signature of 2D optimal solutions in 3D data

Incorporate rotation
Stability analysis

Software development
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