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advection—diffusion equation in a bounded region

Advection and diffusion of heat in a bounded region 2, with Dirichlet
boundary conditions:

00 +u-V0=DA), w-hlyg=0,  0=0,
with V-u =0 and 0(x.t) > 0.

This 1s the heat exchanger
configuration: given an initial
distribution of heat, it is
fluxed away through the
cooled boundaries.

This happens through
diffusion (conduction) alone,
but is greatly aided by
stirring.
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heat exchangers

Our domain will be a 2D cross-section of a traditional coil.
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heat flux

Write (-) for an integral over (2.

The rate of heat loss is equal to the flux through the boundary 0€2:

9, (6) :D/ V0. i dS = —F[8] < 0. *
o2

Goal: find velocity fields u that maximize the heat flux.

Note that * is not so good for this, since velocity does not appear.

The role of u is to increase gradients near the boundary. What it does
internally is not directly relevant. This is in contrast to the traditional
Neumann IVP (chaotic mixing, etc).
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related problem: mean exit time

Take steady velocity u(x). The mean exit time 7(x) of a Brownian
particle initially at x satisfies

u-Vt=DAT 41, Tlgq = 0,

This is a steady advection—diffusion equation with velocity —u and
source 1.

Intuitively, a small integrated mean exit time (7) = ||7||1 implies that the
velocity is efficient at taking heat out of the system.

The mean exit time equation is much nicer than the equation for the
concentration: it is steady, and it applies for any initial concentration

Hu(x).
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relationship between exit time and mean temperature

Recall that () is an integral over space, and take () = 1. The quantity

jo' DEI(&?) dt

Is a cooling time. Smaller is better for good heat exchange.

We have the rigorous bounds

/O 6) dt < |17/ /0 (6) dt < |71 1bo]loc.

Thus, decreasing a norm like ||7||1 or ||7||cc will typically decrease the
cooling time, as expected.
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does stirring always help?

[lyer, G., Novikov, A., Ryzhik, L., & Zlatos, A. (2010). SIAM J. Math. Anal. 42 (6),
2484-2498]

Theorem (lyer et al. 2010)
Q € R" bounded, O € C*. Then

HT“LP(Q) <5 ”TU”LP(“B) : 1 < p < oo,

where B € R" is a ball of the same volume as (2, and 7q is the ‘purely
diffusive’ solution, 0 = DA+ 1 on B.

That is, measured in any norm, the exit time is maximized for a disk with
no stirring. So for a disk stirring always helps, or at least isn't harmful.

They also prove that, surprisingly, if  is not a disk, then it's always
possible to make ||7|| ~(q) increase by stirring. (Related to unmixing

flows? [IMA 2010 gang; see review Thiffeault (2012)])
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optimization problem

Let's formulate an optimization problem to find the best incompressible wu.

Advection—diffusion operator and its adjoint:

— N — DA, Y = gy X — DA

Minimize (1) over steady u(x) with fixed total kinetic energy E = % | ul|3.

The functional to optimize:
Flr,u, 9, p,pl = (1) = (9 (L7 = 1)) + u(|ull5 — 2E) — (pV - u)

Here ¥, u, p are Lagrange multipliers.
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Euler—Lagrange equations

Introduce streamfunction ¢ to satisfy V - u = O:
Uy = —( y't#flrf- Uy, = O 1.

The variational problem gives the Euler—Lagrange equations

L= i v, 0 — 0,
ﬂAr(j: — J(Tﬁﬂ): 0, 50 = 0;
(IVY[%) = 2E,

with the Jacobian
J(1,9) = (Vr x Vi) - z.
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a judicious transformation

Transform to new functions 7, &
r=mn+3(n+E£), JI=m+3(n-¢§)
where recall that 79 is the solution without flow (purely diffusive).

Then by using the Euler-Lagrange equations we can eventually show

() = (10) — £{|VEI*) = Z{Vnl*).

Hence, solutions to E-L equations cannot make (7) increase. So stirring is
always better than not stirring.
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the nonlinear ansatz

(1 — r?). We then make

o=

For a disk the purely diffusive solution is 79 =
the ansatz

£ = /21 B(r) cos m0, n = B(r) sin m0, Y = &/+/2u,
and look for solutions of that form.

Inserting this into the full system gives solutions provided the radial
functions B(r) satisfy the nonlinear eigenvalue problem

rPB" 4+ B + (r°’A—m°)B = :m°B>, X\ = m/+/2p.

The left-hand side is Bessel's equation.

Note that it is rather unusual for such a linear-type ansatz to give nonlinear
solutions. We also have no guarantee that this is the true optimal solution.
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small-E solutions

For small energy E, exact solution in terms of Bessel functions Jpy,(pmnr),
where p,,, are zeros:

(1)/{r0) = 1 — (4m?/mp}n) E + O(E?).
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small-E solutions

For small energy E, exact solution in terms of Bessel functions Jn(pmnr),
where p,,, are zeros:

(T)/(70) = 1 — (4m* /mppmn) E + O(E?).

Pick the solution with the smallest (7): m=2,n=1 for all E < 1:
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large E case: numerics

Numerical solution with Matlab’s bvpbc, using a continuation method:
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large E case: numerics

Numerical solution with Matlab’s bvpbc, using a continuation method:
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Larger m worse at small E, then better, then maybe worse again?
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structure of the radial solution B(r) for large E
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large-E asymptotics: outer solution

Rescaled variables B — E® B and \ — EZ \:

PB'E® 4+ rB'E® 4+ PPABE®*TP — m?BE® = %mz B3 E3e,

Outside the boundary layer, the large-E balance must occur between the
terms rABE**T# and %mz B3E3® 5o B = 2a.

This gives the outer solution

Bouter = E*B = 1/2/m3XE°r.

(This does not include the stagnation zone in the center. Neglect for now.)

Cannot satisfy Bouter(1) = 0: need boundary layer.

16 / 22



large-E asymptotics: inner solution

Inner variable r =1 — ¢p:

1 . 1 —ep) = ¥ E
( ;ﬁ) BHEH I ( (‘p) BIE-:'.‘\- —I_ (.I. o Ef))2 A B E3n o m2 B Ef.’t
€ €
— lmQ é3 E3m'.

M|

Dominant balance: highest derivative with E* = ¢~ 1:

B" + \B = %mE B3,

This has an exact tanh solution, which after matching with the outer
solution as p — o0 gives

Biner = \/2,—5\/;'?12 E“ tanh (m,o)
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