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FEYNMAN-KAC REPRESENTATION

O +u -Vl =rKAG + S, 0] ._o = fo.

Representation using stochastic Lagrangian trajectories:

{:I;Ehs(x] = u(gm{x), s)ds 4+ vV2k AW, Em(};) =95

= t =
6(x, 1) = E|60(&, (X)) + [ﬂ ds S(&, (%), )

Example trajectories calculated in an isotropic Navier-Stokes flow from JHU turbulence database
(http://turbulence.pha. jhu.edu) for with kK = v/ Prfor Pr = 10~ ", Pr=1 and Pr= 10.



FLUCTUATION-DISSIPATION RELATION
00 +u-Vl=rkAO+ S H|t=n = Hp

By the backward It6 lemma:

dsO(&; (x),8) = [(Os + u -V — 6A)O](&; (%), 5)ds + V2k AW - VO(&; ,(x),5)
= S(€, ((x),s)ds + V2k AW - VO(E, (%), 5),
Or, introducing a stochastic scalar field:
e = I -
0(x, 1) = Bo(€r0 (%)) + fﬂ ds S(€,(x), 9

Using the Feynman-Kac representation: 8(x,t) =K [é(x,_ r)] . we have:
r

b(x,t) — E [H(x, r)} — V2x / AW, - VO(E, o(x), 5)
0

An application of to isometry vields our

Var [6(x, 1) = 2« [u dsE IVO(E: (), 9)]°




LOCAL FLUCTUATION-DISSIPATION RELATION

, Var [A6x, 0] = fur ds & |[V6(E +(x), )

At short times, we recover the local scalar dissipation:

L .
lim - Var [o(x, r)] = x|VO(x,0)|>.

At long times, we prove the local variance becomes independent of space;

lim L Var lé}(x. r)‘ = (k| VO(x, 5)|9>ﬂ )

t—o0 2t

where the latter quantity is infinite-time and space average of the dissipation:

| R 5
(k|VO|*), = lim — [ ds— [ dx&|VE(x,s)|’
oot oo t Vv

0 (2
which exists, along subsequences, provided <m|?ﬂ|2>ﬂ remains bounded. This follows

for & > 0, the be ergodicity (and incompressibility) of the processes éf1q{x] e 2intime s
for each fixed x € €.



GLOBAL FLUCTUATION-DISSIPATION RELATION

1

2 QO

<Vm [90 JEH} (x)) + / 5(&5 (%), 5) d5]>ﬂ = H‘-i/:;tdﬁ <|?Hu,u(5)|2>

Balance between scalar dissipation and the input of scalar fluctuations from the initial scalar
field and the scalar sources. as sampled by backwards trajectories.

Recovers Furutsu=Novikov relation when scalar source is a random zero-mean field.
delta-correlated in time:

v L
<h‘-|?9(}{,5)|£>ﬂ+m!5 = ?/ﬂ ax ColxX.3).

o~

Also, for random isotropic uniform gradient initial scalar 8p(x) = G - x,

H./L;fds<|vé(x,5)1**> - EGJF‘ "='<

where the 1, 2 averages are taken over two independent ensembles of Brownian motion
[Sawford et al. 05].
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FLUCTUATION-DISSIPATION RELATION WITH NO WALLS

1 Ky Jf HIf‘ ' V. K
3 (Var (0@ 60 + JREGHET dsD“:H/n ds (V0" (3)7)

THEOREM: Spontaneous stochasticity is necessary and sufficient for anomalous dis-
sipation of passive scalars. Necessary for active scalars!

Idea of Proof: A subsequence v = v}, can be selected together with a corresponding
subsequence ki = 0, so that, e.g.

lim <Vm' [anwﬁiﬂk(x]]] >1‘1 = ] ddx/ cf"xnl/‘cf{xﬂ Ao (x0)fo (%)

k— o0

X [pﬁ(xu. 0; x5, 0|x, t) — p* (%0, 0|x, t)p* (x5, 0|x, t]].

for all 8y € C(2), where p4(x0,0,x},,0|x, t) = §%(x0 — x}) p* (x0, 0%, t).

Note p* and p3 are Young measures on {2 and §2 x {2 respectively, measurably indexed by
elements x I:::f Q since they are narrow i|m|t5 :::rf the Young measures p“kk and pz" k.

| : SR 1)
T —,

Other direction: use Stone-Weierstrass to find 8 € C*°(£2) giving variance > 0.



WALL BOUNDED FLOWS WITH IMPOSED SCALAR FLUX

d&r,ﬁ(x) =

00 +u-VO = A+ S
a0

_ha_g

for x &€ (1,

for

x € 0f).

Define stochastic trajectories which reflect off the boundary of the domain

(&4,5(x), 5) ds+ V2k AW — kn(€; ((x), s) dlrs(x)

1.s(x
where the boundary local time (a time per unit length) is then defined by

fhs(}f} = / dr ﬁ{rllﬂ’r(éh,(}{},”ﬂ}}
of £
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WALL BOUNDED FLOWS WITH IMPOSED SCALAR FLUX

00 +u-Vl =rAO+ S for x €,

L7,
—— = for & 052,
" on = &

Define stochastic trajectories which reflect off the boundary of the domain:

‘]EH(K) =13 (ém[x},s) ds + V2K AW, — H.n(ér1s(x], s) dly.¢(x)
Feynman-Kac formula:

| ) t ) t L
H(x~r)=ﬁ[ﬂo(m(xn+ [ﬂ ds S(&; .(x),$) + /u g(€: (%), ) drfr.s]

Fluctuation dissipation relation:

1 - " ds S(Z &8 e
> <V{]].' I:Hﬂ(ﬁf;”(x)) + I/u s ‘S(sfﬁ(x}‘ 5) -§- ./IJ g{-‘ihq(}c), 5)If1ﬁl.sj|>

Q2

;H/ﬂ c15<|v9(5}|2>ﬂ



WALL BOUNDED FLOWS WITH ZERO FLUX

For zero flux conditions (stirring milk into coffee) our fluctuation-dissipation relation reads

5 (Var (0@ 000 + [ ds S(Eu00.9)] ) =« as(IVO)R),

0

1 - T ' . - i " "
V1R ~ i = e o ey - Aliccimo e L e gy e Ll 8
i =4 & | N ¥ it 1] - | { * F | ' 1 | | =t | W,
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WALL BOUNDED FLOWS WITH IMPOSED SCALAR FLUX

For general flux conditions the situation is more complicated. For example, consider the
heat equation on Rt with constant flux J at x = 0 and 8y, § = 0. Local time densities
may be explicitly calculated and:

. t X
0(x.8) = —J BT (0] ~ Sy 1o (=)

for a suitable scaling function . Scalar boundary layer of thickness ~ /st near x = 0
where the field diverges as ~ Jy/t/k. Dissipation is non-vanishing (and divergent!)
though there is clearly no spontaneous stochasticity:
0 I' w—0
(k|VO(x,1)|*),, ~ S =Y 0!

| F .. : | |.' | o | = il =i : : AT T = : :_.' VT =] "-\.l"‘-. | : .'Iﬁ'. | T ==Y -! (oY ] [ | I—l .:--"

Now to an important application...



RAYLEIGH-BENARD CONVECTION:
Fulerian equations of motion:
Ju+u-Vu=-Vpt+vrvAu+ gg Tz

hT+u-VT = RAT, Vi =10, 0

“‘:::hwz =
with fixed temperature boundary conditions for the temperature:

) /o = Ttop/ Thot models highly conductive plates

or, fixed flux boundary conditions

—K— = ] imposed flux models poorly conducting plates
: 0z |z=+1H/2 p PooTY =P

Figure: fixed temperature RB convection. Erwin P. van der Poel & Rodolfo Ostilla Manico, Livermore National Laborataries,



ANOMALOUS DISSIPATION AND DIMENSIONAL SCALING THEORIES

Fulerian global balances (identical for temperature-b.c. and flux-b.c.) are:

ag (J— %.& T) = 1 {|Vu|*)vos = &0,
JAT .
i £V T Yy = £,

with the role of Jand A T (control/response) reversed for the two cases.

Neglecting the vanishing ﬁ correction term in the energy balance,

Eu ET B J B Nu
U3 /H B (AT2U/H  UAT +/RaPr

where U = (agA TH)'/? is the free-fall velocity. Thus, Kraichnan-Spiegel scaling
Nu ~ C. Ral/2PA/2 holds if and only if at fixed Pr

Eu

- : ET
o TBIH weSelanzuE - -0
oT
OTH+u-VT=KAT, — Rk — = J

0z lz=4+H/2



STOCHASTIC REPRESENTATION: RAYLEIGH-BENARD CONVECTION

Local times densities at the top and bottom wall given by

6P () = /5 dré (E“(}:) — ’—j) , brle) = fs dré (E“(:{) 18 —’j) .

Where gr s = = (&t.s, Tt.s, Ct.s). The stochastic representation of the temperature field is:
T(x,t) = E | To(&0(x) + J (48(x) — 895 () )|
= / dgx.;. TD(}CD) p(xg.0|x. I')

ot t
—J] ds p;(H/2,s|x.t) + Jf ds p;(—H/2, s|x. t).
0 0
with the conditional probability density for the z-component of the position:

it o ) e / d/dy p(.Y. 7 dx.0) = E 5 (2 = &ir))]

Only get a heat input when the parhicle hits the wall, so we only need the probability
|._.I|:_'- | '._-:--I:".II.'. :'_"'l | !-_! ,._'l: -I__If_-_ I:'_ ,-.I._.-._';- | .':_ ;_'-';-I_- 1:' i L.- Ef-_:-é_.l -: :_':”.'_' ri:-._: | -| '|,‘."._'.._'.i |



HOW TO MEASURE MIXING TIME

() )

i = dt (H{c(t))por — 1) + dt (H{c(t))top — 1)
0 0
~ [ dt(He)me— 1)~ [ de(H(c(O)ip = 1)
Where concentration c solves dic+u - Ve = —rkAcand lime — oo {€(t)) top/bor = 1/ H.

MODIFIED FROM: ,
I'wo-dimensional convection simulation with res = 7680 x 4320, Ra = 1U1‘3'. Pr=1.I'= 16 : 9,

1. Lilff, M. Wilczek, A. Daitche, "Turbulence Team Minster’ Youlube channel,
http://www.youtube.com/user/turbulenceteamms, (12,



HOW TO MEASURE MIXING TIME

() ()

T = dt (H(c(t))bor — 1) + dt (H{c(t))top — 1)

— 20 — O

0 0
-/_ dt{H{c(r))m—l]—/_ dt (H(c(t))sop — 1)

Where concentration c solves drc+ u - Ve = —sAc and lim;— — oo (c(t)) 1op/bor = 1/H.

MODIFIED FROM: )
Iwo-dimensional convection simulation with res — VY680 x 4320, Ka = li_l]"!', Pr=1.I"'=16: 9.

J. Liiltf, M. Wilczek, A. Daitche, "Turbulence Team Minster’ Youlube channel,
http://www.youtube.com/user/turbulenceteamms, 2012,



LAGRANGIAN MIXING LENGTH

Let £+ be the distance that a particle can diffuse in the mixing time Tmix:
Lr = vV BETmix = H/v NU

For Nu > 1 this is much larger than the (outer) thermal boundary layer thickness, or
IT__H/" ”:?:‘}hT_H/Izmlj Jttusion of temy |"':-'!i||I-_"-!I'I.|!..!irll.'"||i."I| -.-.;'J'.lll.'.'.-l"?'

| -1| .I_ T I.i'-l— Y S
e Hmiang 1actor |',_|_..

I|"‘~I

| |DW does €1 compare wrth the outer kinetic boundary layer thickness §, = aH/v/ Re?
KS dimensol ng holds, so that Nu ~ (Ra Pr)1/2, Re ~ Ra'/? Pr=1/2 then

8,/€1 ~ (const.)Pr/2, independent of Ra > 1

However, in all present LJ{FJLE iments and simulations Re ~ Ral/? approximate Iy but
Nu ~ Ra* with x < 1/2. | ~urrently observed scaling persists to Ra 3> 1 th

v/l ~ F’r).'-7:’.;3':"’3"""_]:"uL < 1, for fixed Prwith Ra > 1

Under currently observed scaling, 7., will be much longer than the time for the
tracer to mix by pure diffusion across the kinetic & thermal boundary layers!



POSSIBLE TRANSITION TO NEW REGIME (WITH OR WITHOUT KS SCALING)

Define the "Lagrangian mixing zone” as the flow region within distance £+ of the
top/bottom walls. If currently observed scaling persists asymptotically for Ra > 1,
then most of the time Thix Will be spent mixing the tracer across the “central region’
at distances greater than £+ from these walls.

Why? Presumably the turbulence in the “central region” does not reach to within
distance £1 of the wall, so that mixing is slow between the “turbulent core” inside the
central region and the Lagrangian mixing zone near the wall.

One expects that turbulence reaches to within distance £+ of the wall when
Reg := u(l1)t1/v = Regit,

where u(£7) is a characteristic velocity at distance £ from the wall.

[Roche et al. (2010). He et al. (2012)] have claimed to observe a transition to an “ultimate
wgmw W|II1 K“': scaling. Based on their data, one can estimate Reg is of the order of
eral hu 5 at the onset - the order of Re.,; where transition is expected.



PUZZLE OF LONG MIXING TIMES

In terms of the free fall time 74 = H/ U & 75

Tmix \/m

T¢f NU

If Kraichnan-Spiegel scaling is not valid then Tmi > 74!

X. He et al. PRL 108, 024502 (2012):
Ra=1.075 x10'°, Pr=0.859, Nu= 5631 = Tmix/Thes = 5397,
J. J. Niemela & K. R. Sreenivasan, Physica A 315, 203-214 (2002):

Ra~ 10 | Pr~2, Nu~ (0.05) Ra'/? = i/ Thee ~ 8944.

If IKKS scaling doesn't hold, this ration increases as Ra increases! \Why shou

Possibilities: Slowing of large-scale circulation so that 7 > 74, reduced volume and
intensity of thermal plumes, etc. [Niemela & Sreenivasan (2002), Emran & Schumacher
(2012)], turbulence not reaching sufficiently close to the walls



POSSIBLE TRANSITION TO NEW REGIME (WITH OR WITHOUT KS SCALING)

Define the "Lagrangian mixing zone” as the flow region within distance £+ of the
top/bottom walls. If currently observed scaling persists asymptotically for Ra > 1,
then most of the time Thix Will be spent mixing the tracer across the “central region’
at distances greater than £+ from these walls.

Why? Presumably the turbulence in the “central region” does not reach to within
distance £1 of the wall, so that mixing is slow between the “turbulent core” inside the
central region and the Lagrangian mixing zone near the wall.

One expects that turbulence reaches to within distance £+ of the wall when
Reg := u(l1)t1/v = Regit,

where u(£7) is a characteristic velocity at distance £ from the wall.

[Roche et al. (2010). He et al. (2012)] have claimed to observe a transition to an “ultimate
wgmw W|II1 K“': scaling. Based on their data, one can estimate Reg is of the order of
eral hu 5 at the onset - the order of Re.,; where transition is expected.
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