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Polycrystals and Soap Froths

Calcite, CaCOs Soap froth
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Similar topologies: domains, domain walls, triple lines, quadrajunction
Similar evolution: domains coarsen with to decrease domain wall area per unit volume

this naturally leads to v = -AH H: mean curvature

R ~ ( At)“2 A: (surface energy y)-(kinetic coef.)

Polycrystals Soap froths
* Domains: solids/crystals * Domains: gas
+ Walls: grain boundaries « Walls: liquid films

« Kinetic coef: atoms hopping across GB + Kinetic coef: diffusion through film



Motion by Mean Curvature Flow

* (1) evolution is mean curvature H flow

* (2) curvatures balanced at triple junctions -2 triple junction angles are 2r/3
(isotropic case)

* Font tracking implementations in 2d and 3d
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Motion by Mean Curvature Flow

* (1) evolution is mean curvature H flow
* (2) curvatures balanced at triple junctions -2 triple junction angles are 2r/3
(isotropic case)
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Real Grain Boundaries

« But, grains are crystalline = crystal
structure (symmetry) effects & elasticity |

« Anisotropy in GB properties and how
they move (5 dimensional space)

« Not mean curvature flow — crystal
structure matters!




Real Grain Boundaries

+ But, grains are crystalline = crystal ==
structure (symmetry) effects & elasticity S

« Anisotropy in GB properties and how
they move (5 dimensional space)

« Not mean curvature flow — crystal
structure matters!

First, consider first how crystals grow/surfaces evol

Transport of growth unils

* +. + _  thenontoGBs

L Y

v S ' * Normal motion of the surface is
lateral motion of steps

——%&=. " 1« Crystallography determines step
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Direcion of

sep motion * Here, steps move by adding atoms
from the terraces or from the gas




Real Grain Boundaries

* Now, instead of surfaces, we focus on grain boundaries —
iInterfaces between misoriented crystals

* Like surfaces, GBs have " ® ¢ ® ¢ - ¢

steps (characterized by h) ® ® ® *




Real Grain Boundaries

* Now, instead of surfaces, we focus on grain boundaries —
Interfaces between misoriented crystals

« Like surfaces, GBs have ® ® - ®

steps (characterized by h) o ¢ ® g ? ® ? ®

« These steps don't fit perfectly ¢
into the additional crystal
lattice above GB - extra half @
plane = elastic distortion 2> o
dislocations (characterized
by Burgers vector, b)

* This defect = disconnection:
characterized by (b,h) o




Disconnections

Molecular Dynamics (MD) simulation: 25 [100] 6 = 36.87° STGB in EAM Cu

GB w/disconnection gy,

|Burgers
vector|

(1.4)




Disconnections: GB Migration & Shear

(a) (b) T
g Ll b -5
N Mg A
tilt axis S -b
Z

Shear — nucleation of a a DSC dislocation
dipole with b-n =0 (c) t e

Coupling factor:

B = vy/v,= |bl/h

Rae, Smith, Philos. Mag. A41 (1980)




Stress-Driven GB Dynamics

An example of stress-driven (sear—coupled) migration

q Constant Shear Rate
MD simulation in Cu

217(530) [001] 61.9°

Shear coupling facto

B = [bl/h

Cahn, Mishin, Suzuki 2006




Stress-Driven GB Dynamics

An example of stress-driven (shar—coupled) migration

Constant Shear Rate
MD simulation in Cu

217(530) [001] 61.9°

Shear coupling factor

B = |bl/h

Cahn, Mishin, Suzuki 2006




Stress-Driven GB Dynamics

An example of stres—driven (shear—copled) migration

Constant Shear Rate
MD simulation in Cu

217(530) [001] 61.9°

s .
ﬁ%’h‘%} ﬂ*l- [y

Shear coupling factor
B =|bl/h

Cahn, Mishin, Suzuki 2006
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GB Migration is Step Motion

TEM movie of stressed thin film of polycrystalline Al at 420°C

Rajabzadeh, Legros, Combe, Mompiou, Molodov
Philosophical Magazine 93, 1299 (2013)




How do GB move?

* Summary:

B O Q0 Q

GBs move by formation & motion of disconnections
Disconnections: line defects that exist only at interfaces
Disconnections: both dislocation b and step character h

Bicrystallography tells us that b can be any translation vector
consistent with both crystals (depends only on type &
misorientation of two crystals)

Possible step heights h are set by the b and GB inclination

b and h are conserved quantities
Couples stress and chemical potential jump driving forces




Disconnections Pair Energy

Black lattice

White lattice

E=2E, +2E_ . +E

step nt
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Disconnection Nucleation-Controlled Migration

E = 2E 4o, + 2E e + Eiy

+E

Int

e CE

core

« Stress couples to |b/|




Disconnection Nucleation-Controlled Migration

£ = 2Estep = 2Ecnre + Eint = — 2Esrep i 2Ecnre * Efn

2E5tep+2Ec:Dre+Ein
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» Stress couples to |b|]
» Chemical potential jump driving force couples to h;,




Disconnection Nucleation-Controlled Migration

E = 2Estep T 2Ecnre T Eint = 2Estep - 2Ecnre % Efn

ZEStEp+2EcﬂrE+Emt

065 o 0 0
» Stress couples to |b||
* Chemical potential jump driving force couples to h;;

* Nucleation favors small |b| (w/o driving, energy
~|b}?) & small h (w/o driving, energy ~h; )

» Probability P;;~ exp(-E; ;/KT)
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GB Migration: chemical potential jump w
239 32.2° symmetric tilt GB (free ends)




GB Migration: chemical potential jump
239 32.2° symmetric tilt GB (free ends)

y
i
;
|

* Measure slope - shear rate/migration rate: f=v /v,= B/H = 0.58
* The corresponding (b,h) is the bicrystallography allowed {b;,h; }
with the smallest E;

Thomas, Chen, Han, Purohit, DJS, Nature Comm. (2017)




Constrained GB Migration

W=y,-w,>0

Unconstrained
Shear coupling




Constrained GB Migration

Repeat GB migration
simulations using a chemical
potential jump driving force,
but now, keep the ends fixed

GB migrates under chemical
potential jump driving force

Shear coupling means stress
develops

Y=Yy >

Unconstrained Relaxation
Shear coupling (stagnation)




Constrained GB Migration

Exactly same GB as previous
case but w/ top & bottom
edges fixed (rather than free)

Boundary migrates, then stops
Stresses build during migration

Elastic driving force cancels

chemical potential jump driving force

Predict this happens at 7 = 1,

r (GPa)

[ ) 30
+ =360

250 ps

2500 ps

r -280

£39, 300K, ¥=8 meV/A L 300

F =320

+ -3B0

hear Stress,

S

500 750 1000
lime (ps)

osition. H |




Constrained GB Migration
IR IO

Repeat fixed end
simulations but with
a different GB

13 [111] (341)

O O

a Initial 40 ps
o abcd e

Boundary migrates long distance s - £13, 600K, ¥= 13.8 meV/A?
Switches coupling modes as it 1.0 -
migrates g -15

E“ 1{} h
Stresses rise or fall with migration =

* : $ .25 -

depending on the sign of the 3
coupling mode of the moment 3 _"H |
Net, constant GB migration a1 " |
rate!mﬂblhty s —Shear Stress —GB Position |

0 250 | 500 750
Time (D)



Multiple Coupling Modes
* When there are multiple coupling modes, B # b, H # h, f(T)
* The actual shear and migration rates depend on driving force & T

; (wWw
= E(TZ b?E_EinT + l['lz hibLE_Ei/kT) = K11T + Klzlp
{ |

. (wWw z : z :
H= T (T hibiE’_EiKkT + ¥ hf, E"_EE/HT) — K21T + Kzz"'l"
i [

(linearized driving force) e (310)0.1GPa +
* Kyp = Ky the Kj are 1.5/ ® (510) 0.5GPa °
temperature-dependent e (750)0.1GPa
Onsager coefficients O OINROEES |
% Y (510) 0.05ev . B/
:1-0- v (750) 0.01ev - IH
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MD + Theory 0967200 400 600 800 1000 1200 1400

Chen, Thomas, Han, DJS (2018) T (K)




Towards a Continuum GB Equation of Motion

» Disconnection model works well to describe a wide range of GB

kinetic phenomena — shear coupling, roughening, effects of different
driving forces,... GB mobility (sometimes)

« But, too complex to describe GB migration in the “wild” (polycrystal)
rather than "domesticated” GBs (bicrystal)

* Need a continuum equation of motion for GB — replace curvature flow

Zhang, Han, Xiang, DJS, Phys. Rev. Lett. (2017)




Continuum Model for GB Migration

* Replace discrete disconnection steps/dislocation with continuous
disconnection density p(x) for fixed coupling constant g=b/H

» Disconnection density is related to GB profile: i.e., Hp(x) = h,(x)

» Evolution of profile (pure kinematics):
ht - Udhx=0

» Disconnection velocity (assume overdamped disconnection motion):
vq = Mqfq
where M 4 is the disconnection mobility and f 4 is the total

force on the disconnection — internal and external stresses,
capillarity, chemical potenital driving forces,...




Continuum Model for GB Migration

 This leads to

he = —Mgl( + Db + PH — yhy Hllhy |

« Term 1: the elastic interaction of the (Burgers vector) of the
disconnections with a stress field — i.e., the Peach-Koehler force
where g; is the stress field associated with other disconnections

and 7 is an applied stress)

[ Bh.(x:,t
K Lh, (x4 )dx
X — X4

0; —

— 00

17

K

B U
- 2n(1—v)




Continuum Model for GB Migration

 This leads to

hy = _Md[(o_i +7)b +WH — yhy H]|hy]

« Term 1: the elastic interaction of the (Burgers vector) of the
disconnections with a stress field — i.e., the Peach-Koehler force
where g; Is the stress field associated with other disconnections

and 7 is an applied stress)

( Bh. (et
K Bhy(x )dx
X — Xq

— 00

0; —

1

GB displacement (6E /62)

K

B H
- 2n(1—v)

Terms 2 &3: arise from the variation of the energy with respect to

Term 3: associated with the decrease in GB energy that occurs

upon the mutual annihilation of opposite disconnections as they
random walk on the GB - this is the curvature flow term




Continuum Equation of Motion

* This does not yet address the question of where disconnections
come from; source term g

ht‘l‘ vdhx — g

» Without a source term, a flat GB would always remain flat




Continuum Equation of Motion

* This does not yet address the question of where disconnections
come from; source term g

ht+ vdhx — g

« Without a source term, a flat GB would always remain flat

» Source: equilibrium thermal fluctuations in GB profile;
..e., equilibrium concentration of disconnections

+ .- _ 1 —2F,/kgT _ 1 _—F,u/kgT
c; €, = —¢ orc, =-—e

e ~e a2 e a
where F, is the nucleation barrier for the disconnection pair

» This yields a source term of the form

M
104

g = —2ceHvg

B = (2H/a) e Fa/ksT

* The final equation of motion is

h = =My[(o; + T)b +¥YH —yh,, H](Jh,| + B) |

* The main temperature dependences are in B, M 4, and (b,H)




Continuum Equation of Motion

« Equation of motion

he = _Md[(gi +17)b + WHh, — ygphy H|(lhy| + B)

where B = ¢,H = (2H/a)exp(—F,/kT)




Continuum Equation of Motion

« Equation of motion

hy = _Md[(gi +17)b + WHh, — ygphy H|(lhy| + B)

where B = c,H = (2H/a)exp(—F4/kT)

» Two examples (finite difference)

Relaxation of Perturbed GB
No stress, T=0

1.0 |
05|

/ [, (x102)

0.0

-

h

0 0.5 |
x/L




Continuum Equation of Motion

« Equation of motion

hy = _Md[(gi +17)b + WHh, — ygphy H|(|hy| + B)

where B = c¢,H = (2H/a)exp(—F4/kT)

» Two examples (finite difference) G evalution
Relaxation of Perturbed GB Pinned at ends
No stress, T=0 Applied stress, 2 T's

1.0}

0.5

-~ 0.0

h/L (x102)

0.5 ]

l

-1.01} ‘.
0 0.5 | 0 0.5 |

x/L x/L




Grain Boundary Triple Junctions

* In a polycrystal, GBs are not of infinite extent, but end at
vertices where 3 grains meet

« Under an applied stress, disconnections nucleate and
propagate to the vertices where they are pinned -
disconnections pile-up

 Pile-up generates stress / costs elastic energy

» Continued TJ motion requires nucleation of
oppositely signed disconnection to relieve stress




Grain Boundary Triple Junctions

* In a polycrystal, GBs are not of infinite extent, but end at
vertices where 3 grains meet

» Under an applied stress, disconnections nucleate and
propagate to the vertices where they are pinned -
disconnections pile-up

s'& =

» Pile-up generates stress / costs elastic energy ." .

« Continued TJ motion requires nucleation of
oppositely signed disconnection to relieve stress

TJ migration rate, In(rate)

1T (eV)




Grain Boundary Triple Junctions

* Single-disconnection mode

L .
> GB il <c *Trip'ie
< junction

r

This problem is simple;

s analytical solution for disconnection
T T g density profile p(x)=h,(x)/H = h(x)




Grain Boundary Triple Junctions

Example: pileup of disconnections at triple junctions

—




Grain Boundary Triple Junctions

Example: pileup of disconnections at triple junctions

Molecular Dynamics Simulations

Aramfard, Deng (2014) 4o
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Grain Boundary Triple Junctions

- |f triple junctions (TJs) were really pinned, grain growth would

not be possible -2 triple junctions can move

» Flux of steps from disconnections into TJ moves the TJ




Grain Boundary Triple Junctions

« |f triple junctions (TJs) were really pinned, grain growth would
not be possible - triple junctions can move

 Flux of steps from disconnections into TJ moves the TJ

« But Burgers vectors may or may not be annihilated at TJs =
back stress from Burgers vector accumulation pushes
disconnections away from TJ

3
vy == » HOJO@o)n®
1=1

If there is no barrier to disconnection reaction at TJ GB'
(i (i BY ¢y v
J%W (%) = (p(%0) + 5 v, (Xo0) L
4 A

However, if there is a disconnection reaction barrier at the TJ, then yg)(xn)
should be replaced by the TJ reaction rate/mobility A




Grain Boundary Triple Junctions

. )

» Consider a simple example of an idealized

polycrystal subject to uniaxial tension

* No shear on vertical GBs; equal and
opposite shear on diagonal GBs — mirror
symmetry around vertical GBs

» TJs move vertically (steady-state)

(b)

-ﬁ.“l D D:.1 {]:2 U.HS 0:4 U.-S 10% 10° 104
x/d A/(MyBH/d)

10°




Conclusions

« GB migration is controlled by disconnection motion
* Disconnections are characterized by BOTH hand b

* Multiple {b,h} pairs for every GB; set by
bicrystallography




Conclusions

« GB migration is controlled by disconnection motion
 Disconnections are characterized by BOTH hand b

* Multiple {b,h} pairs for every GB; set by
bicrystallography

* Choosing between modes depends on nature of the
(local) driving force(s) and temperature

* GB mobility is NOT a material/GB property;
disconnection properties are




Opportunities and Challenges

Extension of the equation of motion to include
multiple disconnection types {b,h}

GBs that are not constrained to h,<<1; multiple
reference states

More general description of TJs

Numerical model for microstructure evolution (like
our curvature flow code)

Grain boundary mobility

Grain rotation
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