Equations of Motion for Grain Boundaries in Polycrystalline Materials

David J. Srolovitz City University of Hong Kong University of Pennsylvania

Collaborators:

Jian Han, Spencer Thomas, Kongtao Chen, Prashant Purohit Luchan Zhang & Yang Xiang

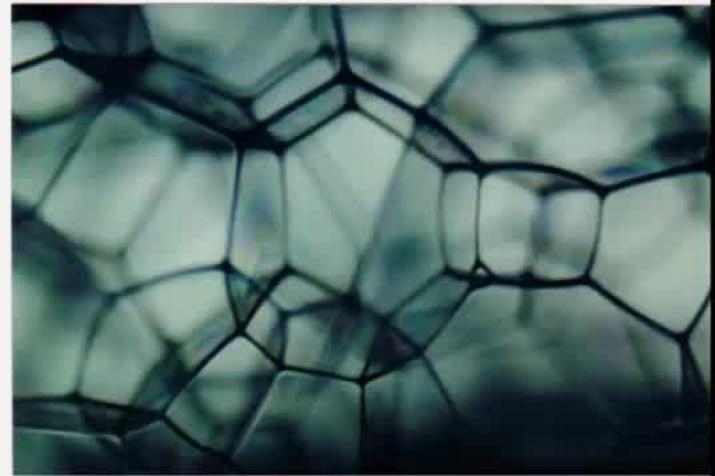
UPenn HKUST

Polycrystals and Soap Froths

Calcite, CaCO₃

X1800 20 Pm 15kU 9mm #14148 6510XZ #DSH 962#

Soap froth



Similar topologies: domains, domain walls, triple lines, quadrajunction

Similar evolution: domains coarsen with to decrease domain wall area per unit volume

this naturally leads to v = -AH

H: mean curvature

 $R \sim (At)^{1/2}$

A: (surface energy γ)·(kinetic coef.)

Polycrystals

Domains: solids/crystals

Walls: grain boundaries

Kinetic coef: atoms hopping across GB

Soap froths

Domains: gas

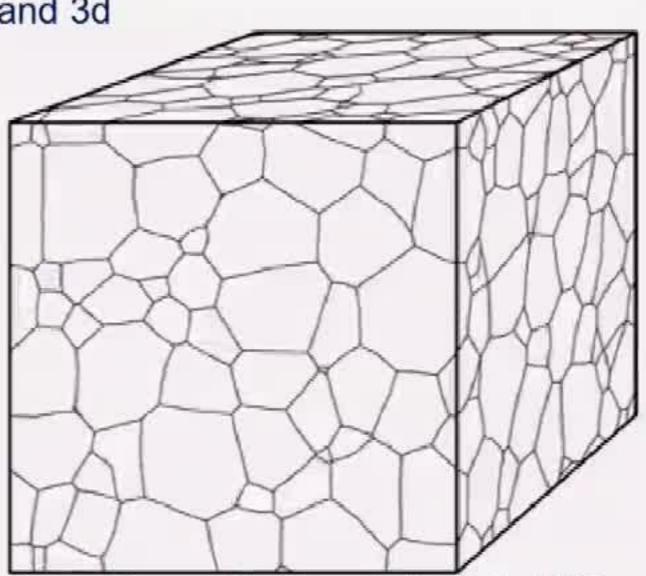
Walls: liquid films

· Kinetic coef: diffusion through film

Motion by Mean Curvature Flow

- (1) evolution is mean curvature H flow
- (2) curvatures balanced at triple junctions → triple junction angles are 2π/3 (isotropic case)

Font tracking implementations in 2d and 3d



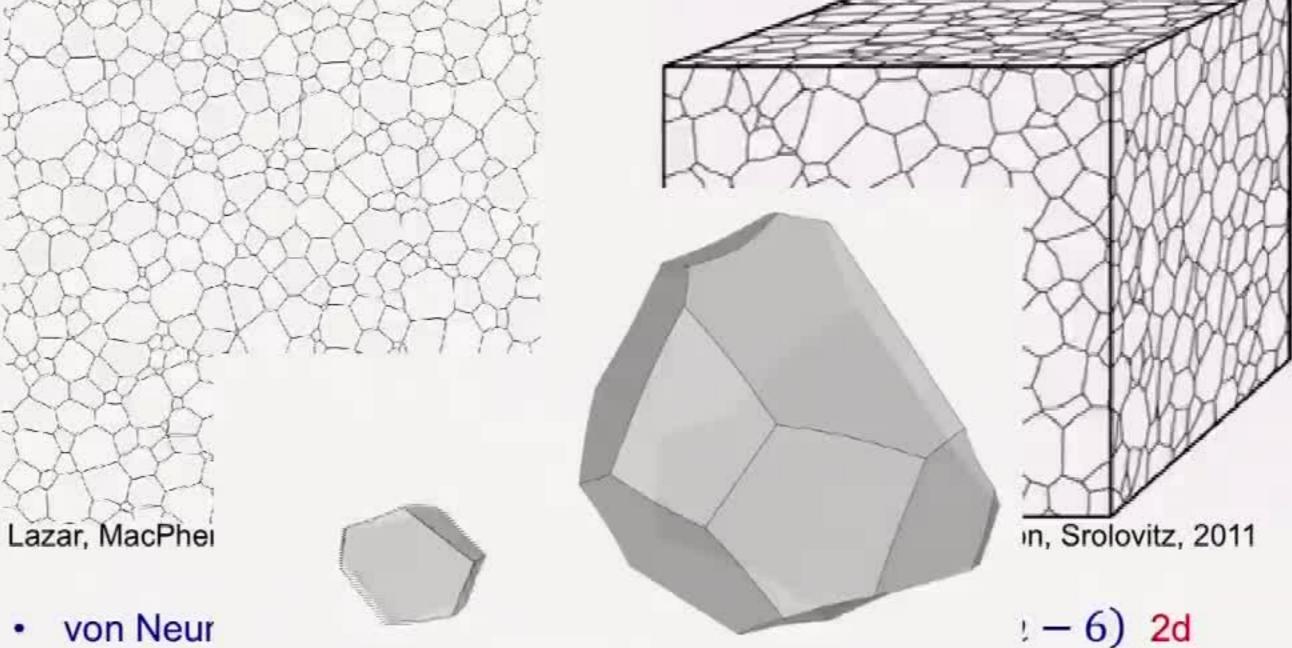
Lazar, Mason, MacPherson, Srolovitz, 2011

- von Neumann (1951) & Mullins (1952): $\left(\frac{\partial A}{\partial t}\right) = \left(\frac{M\gamma\pi}{3}\right)(n-6)$ 2d
- MacPherson & Srolovitz (2007) all d

Motion by Mean Curvature Flow

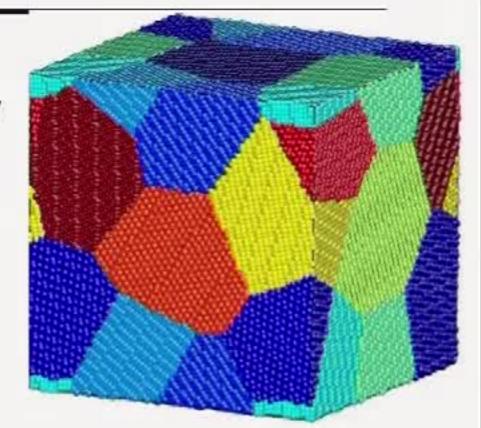
- (1) evolution is mean curvature H flow
- (2) curvatures balanced at triple junctions \rightarrow triple junction angles are $2\pi/3$ (isotropic case)

Font tracking implementations in 2d and 3d

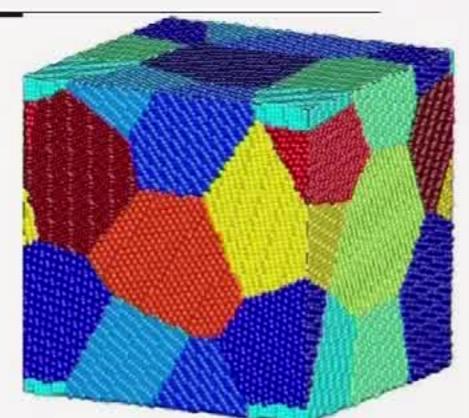


MacPher

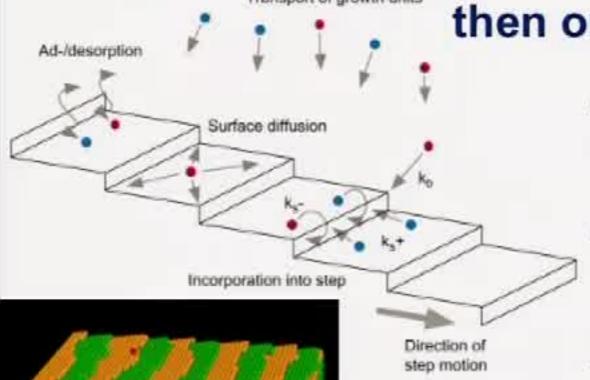
- But, grains are crystalline → crystal structure (symmetry) effects & elasticity
- Anisotropy in GB properties and how they move (5 dimensional space)
- Not mean curvature flow crystal structure matters!



- But, grains are crystalline → crystal structure (symmetry) effects & elasticity
- Anisotropy in GB properties and how they move (5 dimensional space)
- Not mean curvature flow crystal structure matters!



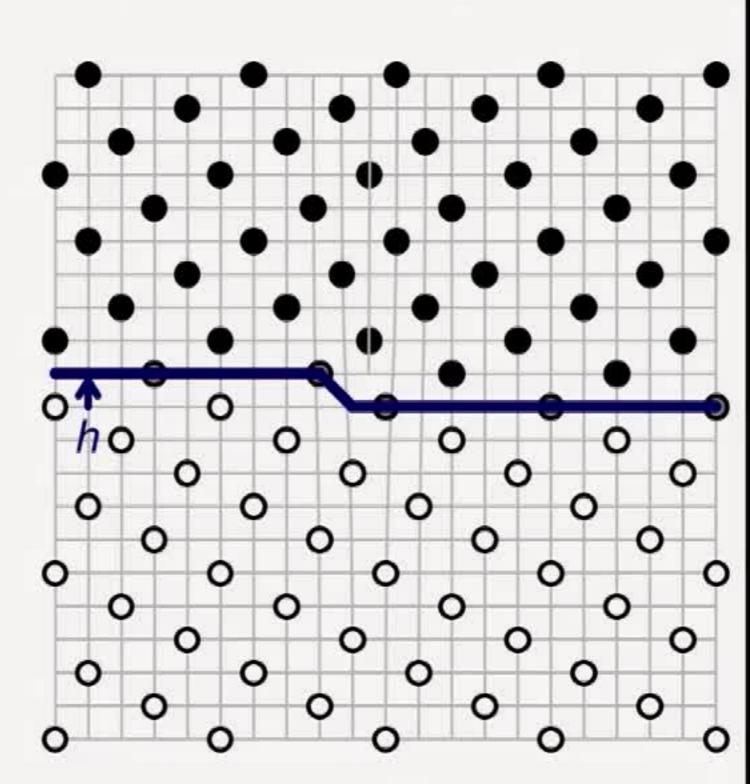
First, consider first how crystals grow/surfaces evolve



- Normal motion of the surface <u>is</u> lateral motion of steps
- Crystallography determines step heights
- Here, steps move by adding atoms from the terraces or from the gas

 Now, instead of surfaces, we focus on grain boundaries – interfaces between misoriented crystals

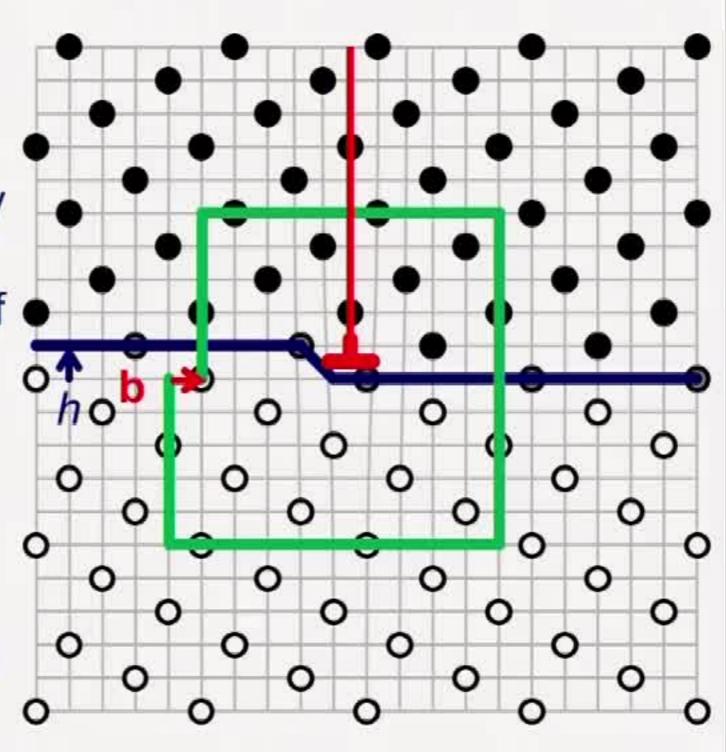
 Like surfaces, GBs have steps (characterized by h)



- Now, instead of surfaces, we focus on grain boundaries interfaces between misoriented crystals
- Like surfaces, GBs have steps (characterized by h)
- These steps don't fit perfectly into the additional crystal lattice above GB → extra half plane → elastic distortion → dislocations (characterized by Burgers vector, b)

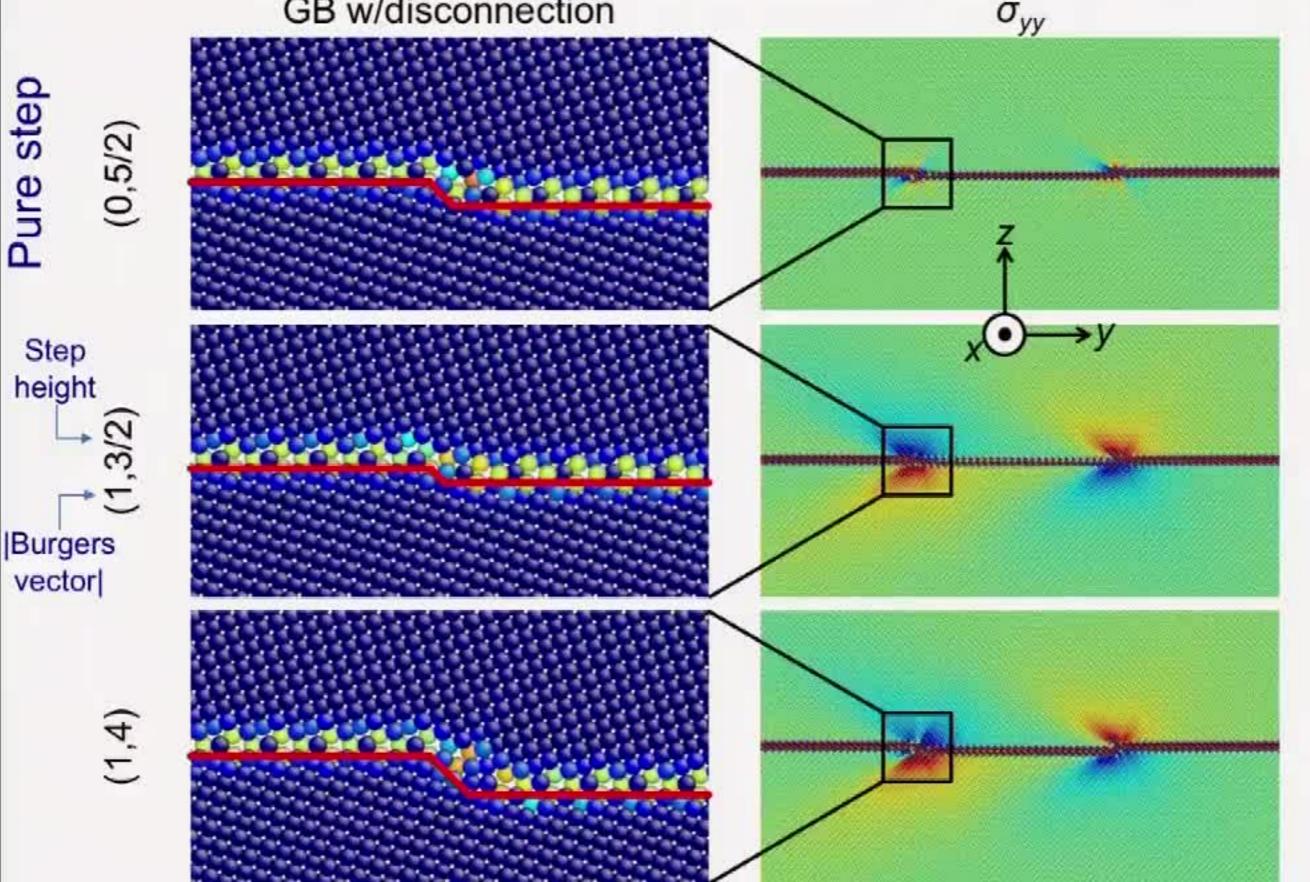
$$\mathbf{b} = \oint \frac{\partial \mathbf{u}}{\partial s} ds$$

This defect → disconnection;
 characterized by (b,h)

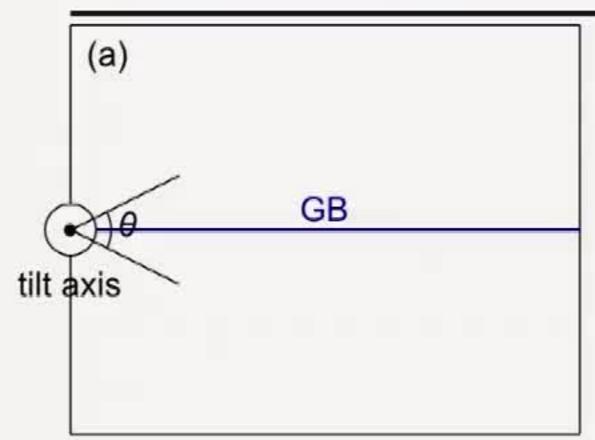


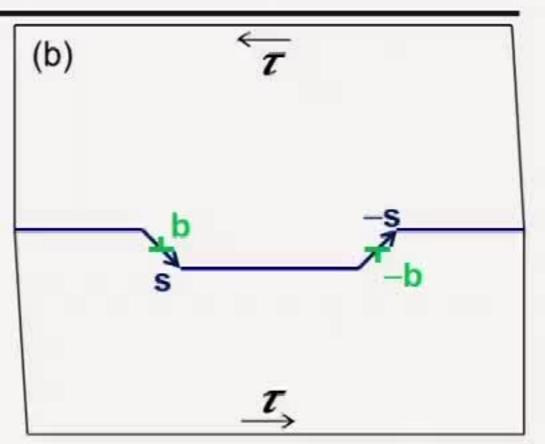
Disconnections

Molecular Dynamics (MD) simulation: Σ5 [100] θ = 36.87° STGB in EAM Cu GB w/disconnection σ_{vv}



Disconnections: GB Migration & Shear

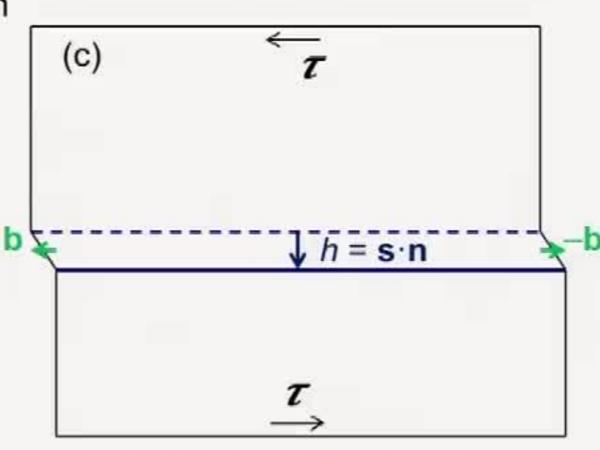




Shear \rightarrow nucleation of a a DSC dislocation dipole with $\mathbf{b} \cdot \mathbf{n} = 0$

Coupling factor:

$$\beta = v_{\parallel}/v_n = |\mathbf{b}|/h$$

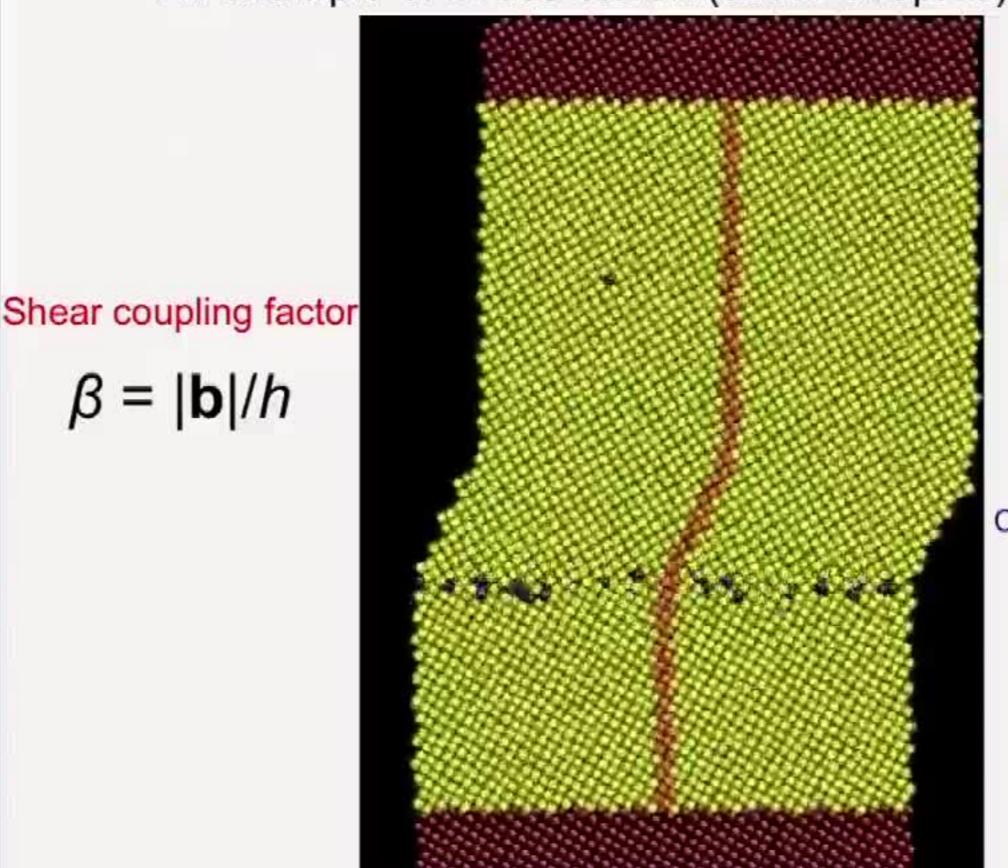


Rae, Smith, Philos. Mag. A41 (1980)

Stress-Driven GB Dynamics

 $\beta = |\mathbf{b}|/h$

An example of stress-driven (shear-coupled) migration



Constant Shear Rate MD simulation in Cu

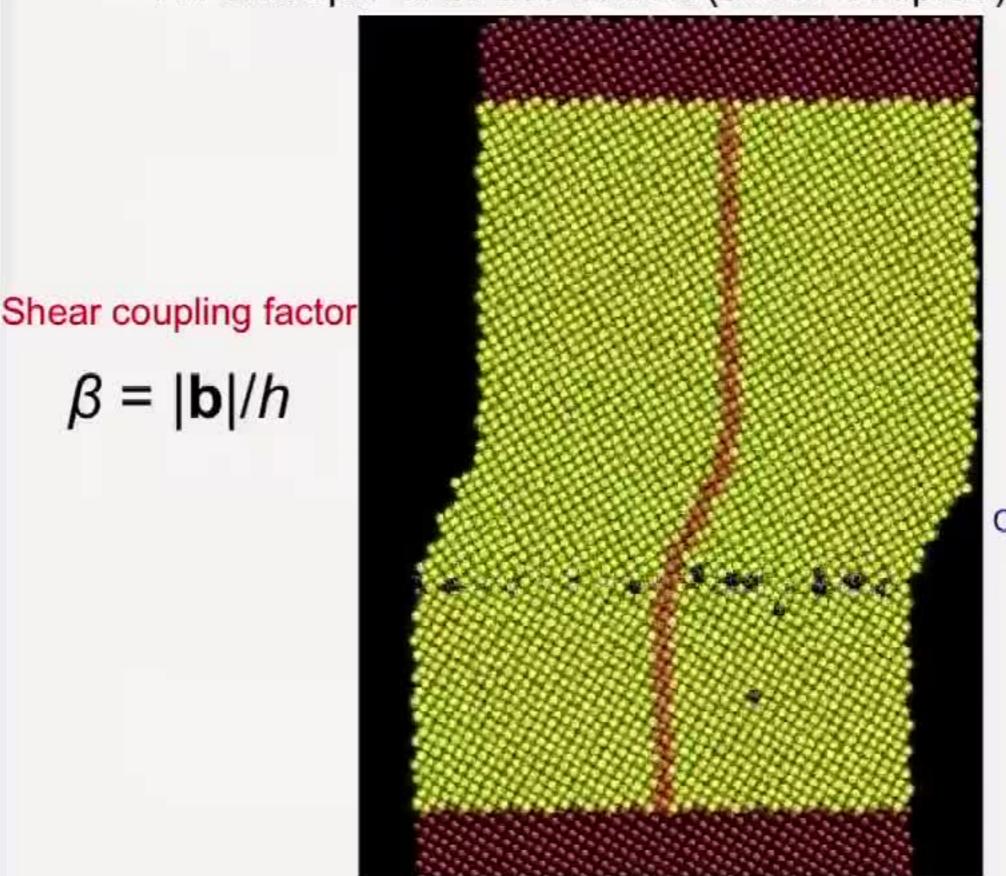
Σ17(530) [001] 61.9°

Cahn, Mishin, Suzuki 2006

Stress-Driven GB Dynamics

 $\beta = |\mathbf{b}|/h$

An example of stress-driven (shear-coupled) migration



Constant Shear Rate MD simulation in Cu

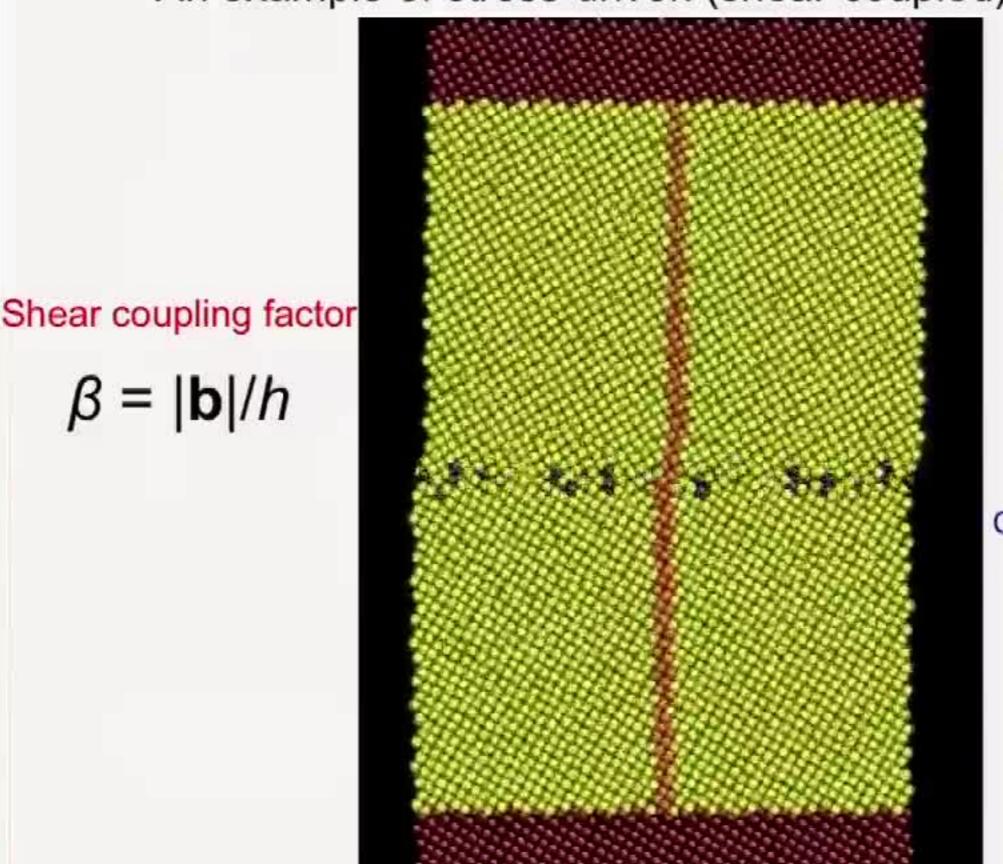
Σ17(530) [001] 61.9°

Cahn, Mishin, Suzuki 2006

Stress-Driven GB Dynamics

 $\beta = |\mathbf{b}|/h$

An example of stress-driven (shear-coupled) migration



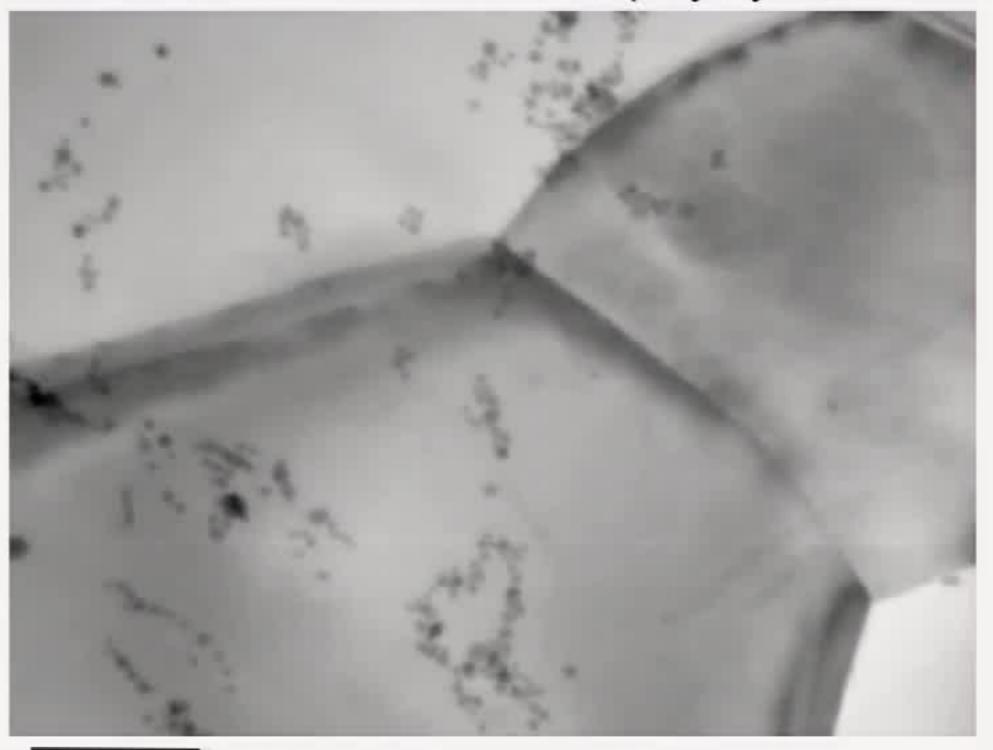
Constant Shear Rate MD simulation in Cu

Σ17(530) [001] 61.9°

Cahn, Mishin, Suzuki 2006

GB Migration is Step Motion

TEM movie of stressed thin film of polycrystalline Al at 420°C



Tensile axis

200 nm

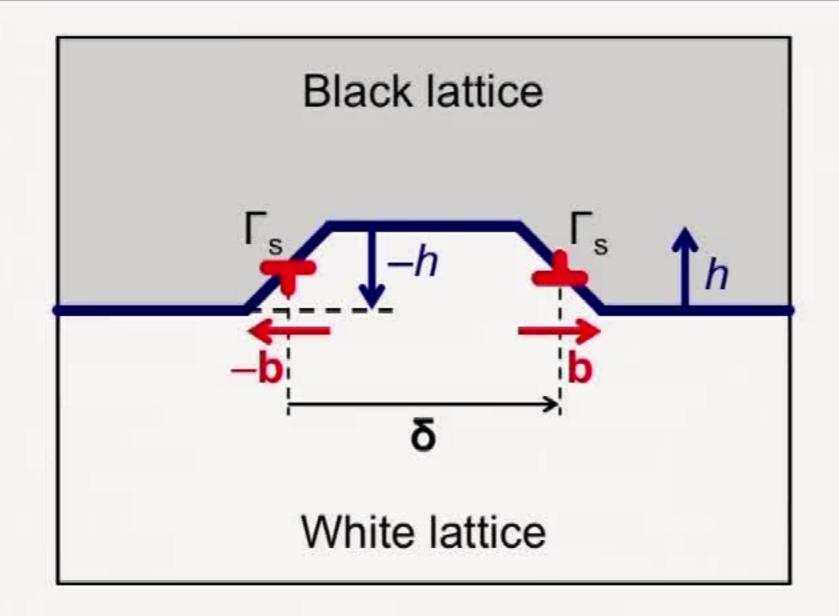
Rajabzadeh, Legros, Combe, Mompiou, Molodov Philosophical Magazine 93, 1299 (2013)

How do GB move?

Summary:

- GBs move by formation & motion of disconnections
- Disconnections: line defects that exist only at interfaces
- Disconnections: both dislocation b and step character h
- Bicrystallography tells us that b can be any translation vector consistent with both crystals (depends only on type & misorientation of two crystals)
- Possible step heights h are set by the b and GB inclination
- b and h are conserved quantities
- Couples stress and chemical potential jump driving forces

Disconnections Pair Energy

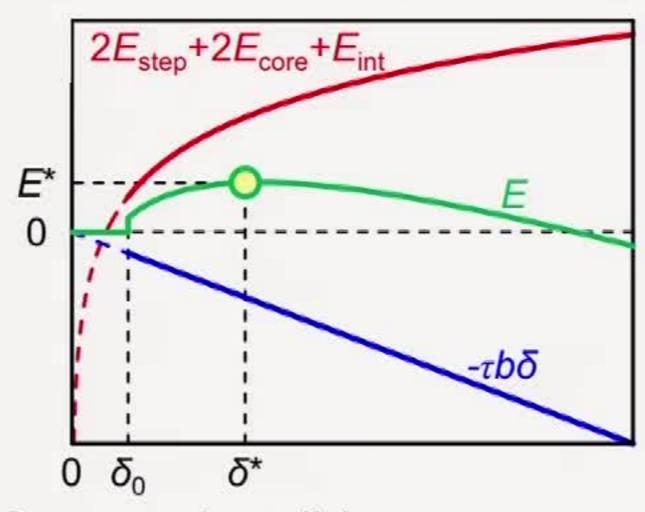


$$E = 2E_{\text{step}} + 2E_{\text{core}} + E_{\text{int}}$$

$$E_{\text{step}} = \Gamma_{\text{s}} |h|, E_{\text{core}} = \zeta K b^2, E_{\text{int}} = 2K b^2 \ln \frac{\delta}{r_0}$$

Disconnection Nucleation-Controlled Migration

$$E = 2E_{\text{step}} + 2E_{\text{core}} + E_{\text{int}} - \tau b \delta$$

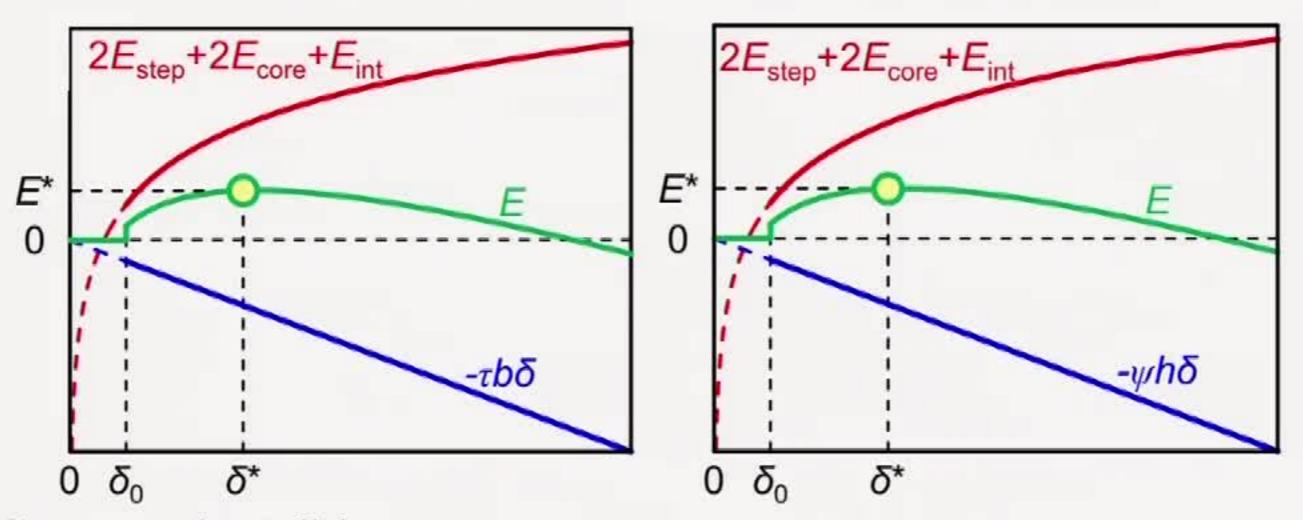


Stress couples to |b_i|

Disconnection Nucleation-Controlled Migration

$$E = 2E_{\text{step}} + 2E_{\text{core}} + E_{\text{int}} - \tau b \delta$$

$$E = 2E_{step} + 2E_{core} + E_{int} - \psi h \delta$$

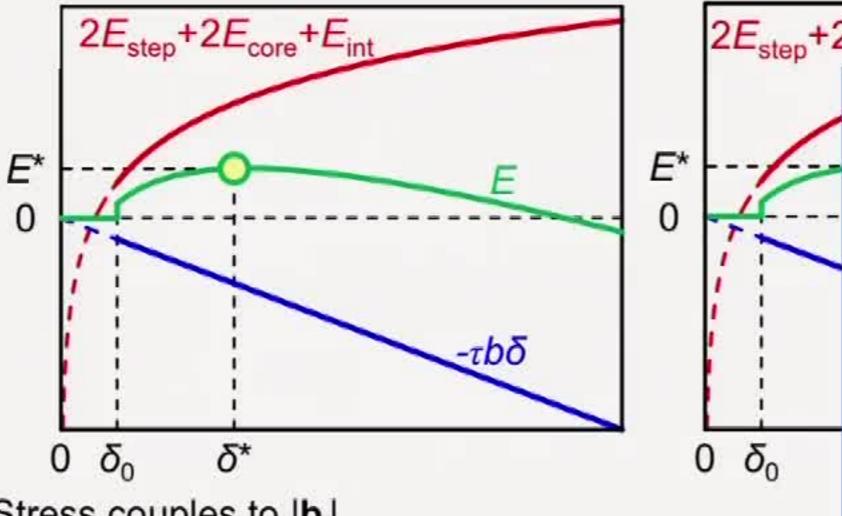


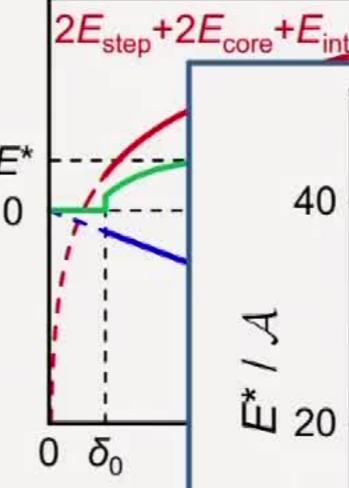
- Stress <u>couples</u> to |b_i|
- Chemical potential jump driving force couples to h_{i,j}

Disconnection Nucleation-Controlled Migration

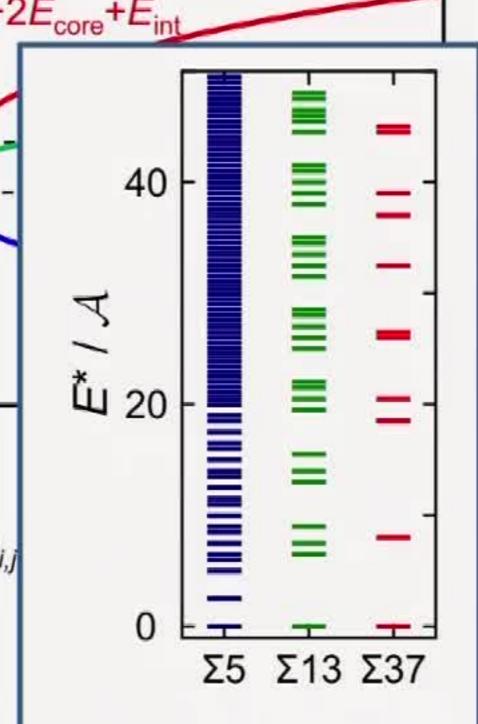
$$E = 2E_{\text{step}} + 2E_{\text{core}} + E_{\text{int}} - \tau b \delta$$

$$E = 2E_{step} + 2E_{core} + E_{int} - \psi h \delta$$



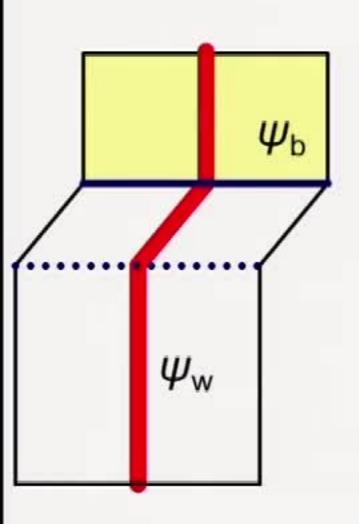


- Stress couples to |b_i|
- Chemical potential jump driving force couples to h_{i,i}
- Nucleation favors small |b| (w/o driving, energy) $\sim |\mathbf{b}_i|^2$) & small h (w/o driving, energy $\sim h_{ij}$)
- Probability P_{i,i} ~ exp(-E_{i,i}/kT)



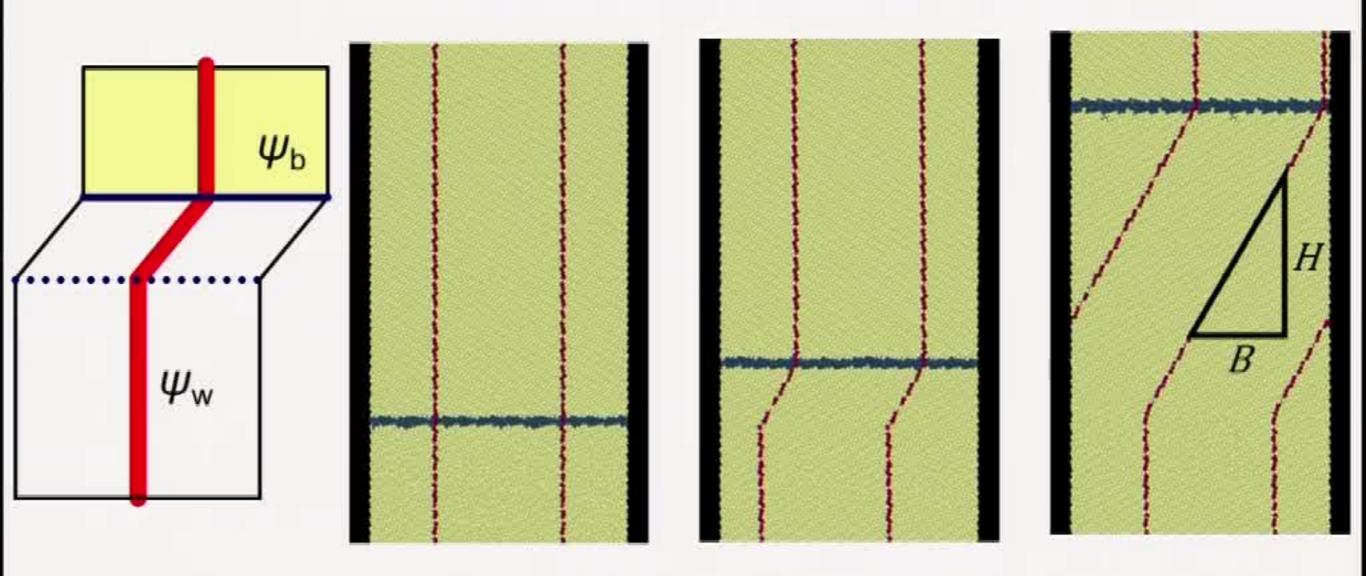
GB Migration: chemical potential jump ψ

Σ39 32.2° symmetric tilt GB (free ends)



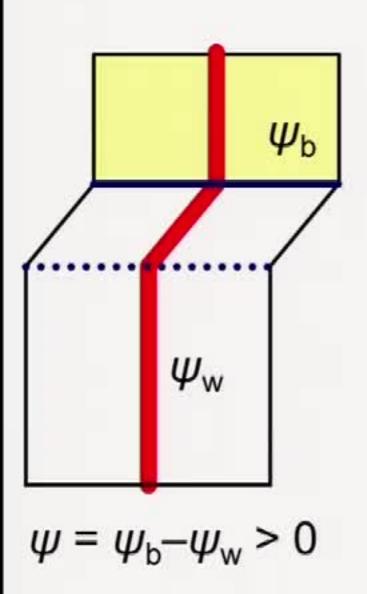
GB Migration: chemical potential jump ψ

Σ39 32.2° symmetric tilt GB (free ends)

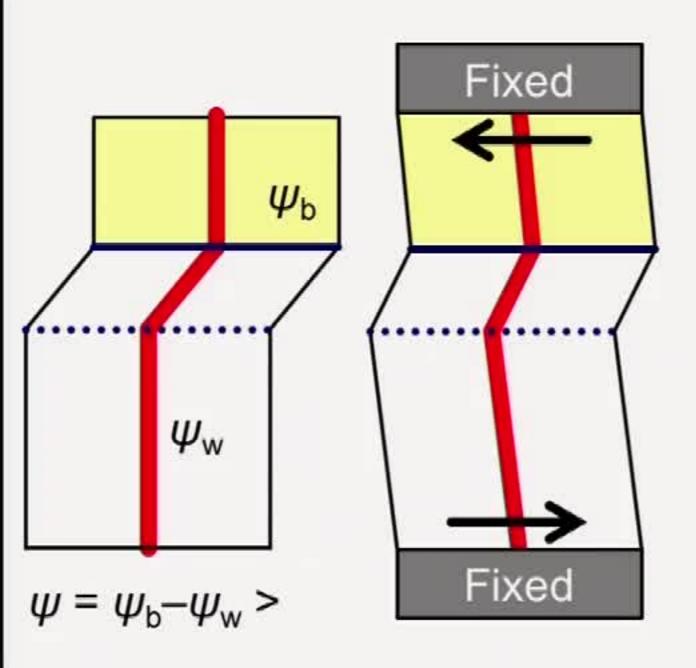


- Measure slope → shear rate/migration rate: β=v_{||}/v_n= B/H = 0.58
- The corresponding (b,h) is the bicrystallography allowed {b_i,h_{i,j}} with the smallest E_i;

Thomas, Chen, Han, Purohit, DJS, Nature Comm. (2017)



Unconstrained Shear coupling



Repeat GB migration simulations using a chemical potential jump driving force, but now, keep the ends fixed

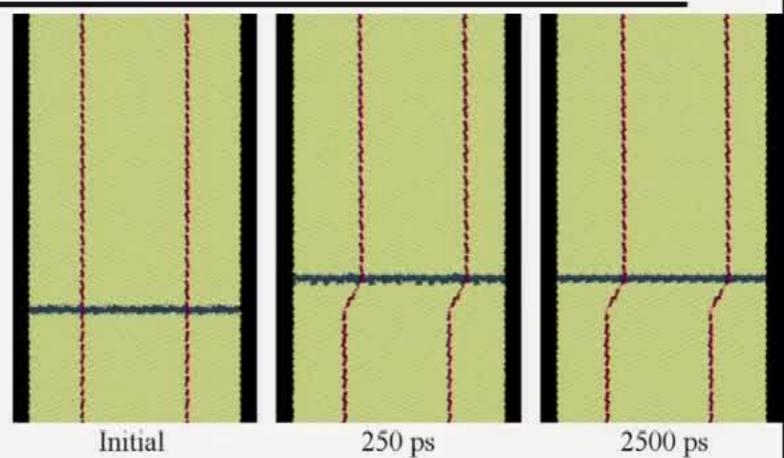
GB migrates under chemical potential jump driving force

Shear coupling means stress develops

Unconstrained Shear coupling

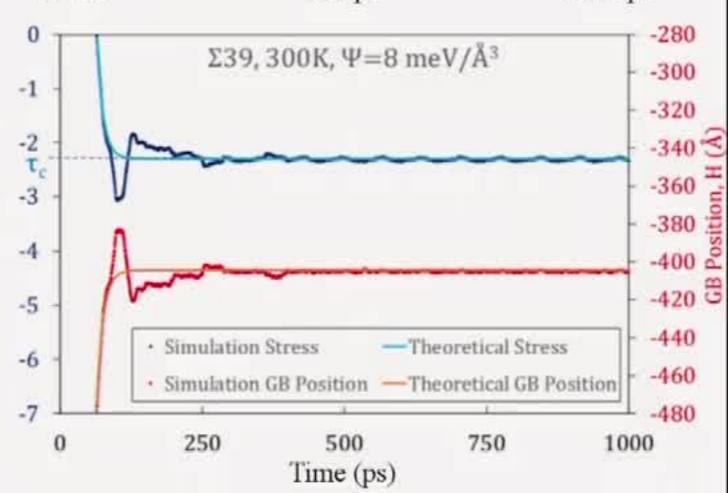
Relaxation (stagnation)

Exactly same GB as previous case but w/ top & bottom edges fixed (rather than free)

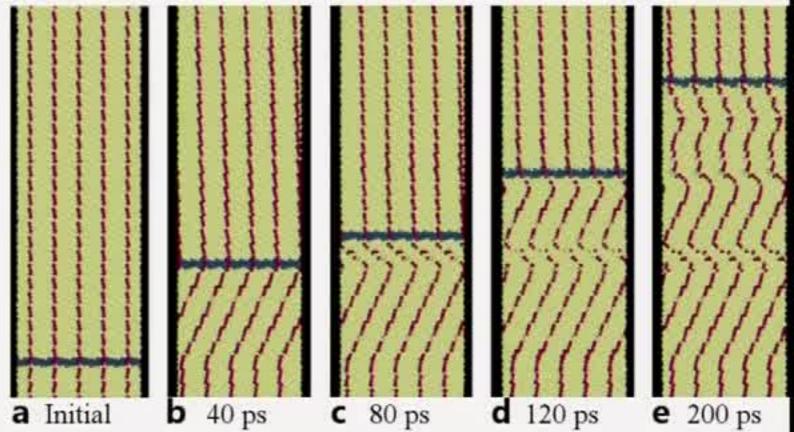


Boundary migrates, then stops Stresses build during migration

Elastic driving force cancels chemical potential jump driving force $\frac{\pi}{2}$ Predict this happens at $\tau = \tau_c$



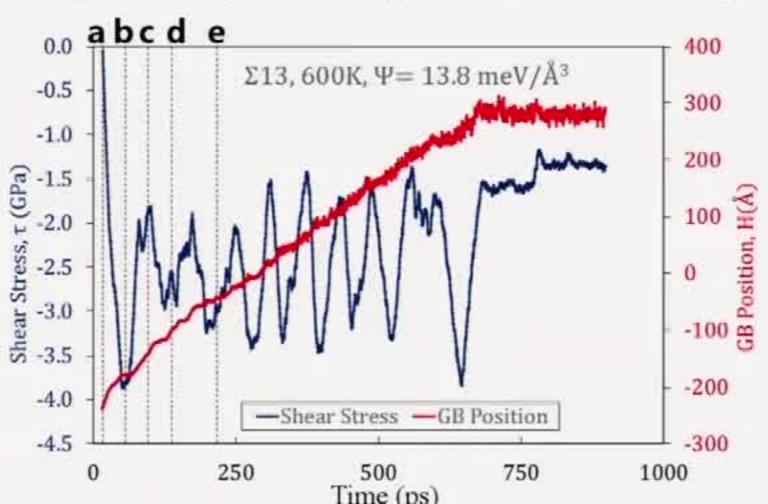
Repeat fixed end simulations but with a different GB Σ13 [111] (341)



Boundary migrates long distance Switches coupling modes as it migrates

Stresses rise or fall with migration depending on the sign of the coupling mode of the moment

Net, constant GB migration rate/mobility



Multiple Coupling Modes

- When there are multiple coupling modes, $B \neq b$, $H \neq h$, $\beta(T)$
- The actual shear and migration rates depend on driving force & T

$$\dot{B} = \frac{\omega w}{kT} \left(\tau \sum_{i} b_{i}^{2} e^{-E_{i}/kT} + \Psi \sum_{i} h_{i} b_{i} e^{-E_{i}/kT} \right) = K_{11} \tau + K_{12} \Psi$$

$$\dot{H} = \frac{\omega w}{kT} \left(\tau \sum_{i} h_{i} b_{i} e^{-E_{i}/kT} + \Psi \sum_{i} h_{i} e^{-E_{i}/kT} \right) = K_{21} \tau + K_{22} \Psi$$

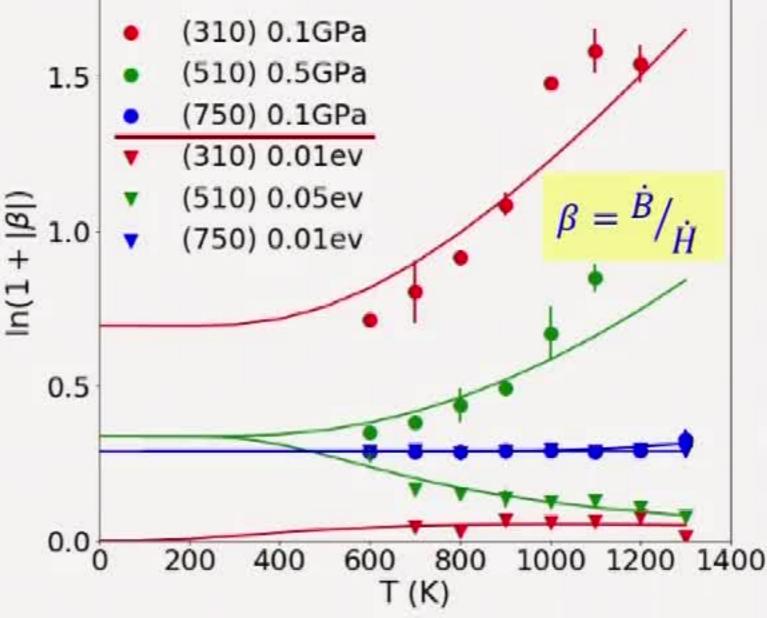
(linearized driving force)

 K₁₂ = K₂₁: the K_{ij} are temperature-dependent Onsager coefficients

$$\frac{1}{\beta} = \frac{\sum_{i} h_{i} e^{-\frac{Q_{i}}{k_{B}T}} \sinh \frac{b_{i}S\tau - h_{i}S\Delta\psi}{k_{B}T}}{\sum_{i} b_{i} e^{-\frac{Q_{i}}{k_{B}T}} \sinh \frac{b_{i}S\tau - h_{i}S\Delta\psi}{k_{B}T}} \stackrel{+}{\sqsubseteq}$$

$$\frac{Q_{i}}{L} = Ab_{i}^{2} + B|h|$$

MD + Theory Chen, Thomas, Han, DJS (2018)

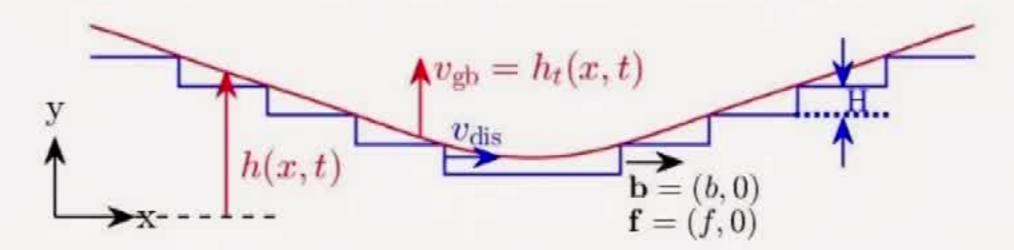


Towards a Continuum GB Equation of Motion

- Disconnection model works well to describe a wide range of GB kinetic phenomena – shear coupling, roughening, effects of different driving forces,... GB mobility (sometimes)
- But, too complex to describe GB migration in the "wild" (polycrystal) rather than "domesticated" GBs (bicrystal)
- Need a continuum equation of motion for GB replace curvature flow

Continuum Model for GB Migration

- Replace discrete disconnection steps/dislocation with continuous disconnection density ρ(x) for fixed coupling constant β=b/H
- Disconnection density is related to GB profile: i.e., $H\rho(x) = h_x(x)$



Evolution of profile (pure kinematics):

$$h_{\rm t} + v_{\rm d} h_{\rm X} = 0$$

Disconnection velocity (assume overdamped disconnection motion):

$$v_{\rm d} = M_{\rm d} f_{\rm d}$$

where M_d is the disconnection mobility and f_d is the total force on the disconnection – internal and external stresses, capillarity, chemical potential driving forces,...

Continuum Model for GB Migration

This leads to

$$h_t = -M_{\mathbf{d}}[(\sigma_i + \tau)b + \Psi H - \gamma h_{xx}H]|h_x|$$

 Term 1: the elastic interaction of the (Burgers vector) of the disconnections with a stress field – i.e., the Peach-Koehler force where σ_i is the stress field associated with other disconnections and τ is an applied stress)

$$\sigma_i = K \int_{-\infty}^{\infty} \frac{\beta h_x(x_1, t)}{x - x_1} dx_1;$$

$$K = \frac{\mu}{2\pi(1-\nu)}$$

Continuum Model for GB Migration

This leads to

$$h_t = -M_{\mathbf{d}}[(\sigma_i + \tau)b + \Psi H - \gamma h_{xx}H]|h_x|$$

 Term 1: the elastic interaction of the (Burgers vector) of the disconnections with a stress field – i.e., the Peach-Koehler force where σ_i is the stress field associated with other disconnections and τ is an applied stress)

$$\sigma_i = K \int_{-\infty}^{\infty} \frac{\beta h_x(x_1, t)}{x - x_1} dx_1; \qquad K = \frac{\mu}{2\pi(1 - \nu)}$$

- Terms 2 &3: arise from the variation of the energy with respect to GB displacement $(\delta E/\delta z)$
- Term 3: associated with the decrease in GB energy that occurs upon the mutual annihilation of opposite disconnections as they random walk on the GB – this is the curvature flow term

- This does not yet address the question of where disconnections come from; source term g $h_{t} + v_{d}h_{x} = g$
- · Without a source term, a flat GB would always remain flat

- This does not yet address the question of where disconnections come from; source term g $h_t + v_d h_x = g$
- Without a source term, a flat GB would always remain flat
- Source: equilibrium thermal fluctuations in GB profile;
 i.e., equilibrium concentration of disconnections

$$c_e^+ c_e^- = \frac{1}{a^2} e^{-2F_d/k_B T}$$
 or $c_e^- = \frac{1}{a} e^{-F_d/k_B T}$

where F_d is the nucleation barrier for the disconnection pair

This yields a source term of the form

$$g = -2c_e H v_d \frac{h_x}{|h_x|}$$
 $B = (2H/a) e^{-F_d/k_B T}$

The final equation of motion is

$$h_t = -M_{\mathbf{d}}[(\sigma_i + \tau)b + \Psi H - \gamma h_{xx}H](|h_x| + B)$$

The main temperature dependences are in B, M_d, and (b,H)

Equation of motion

$$h_t = -M_{\mathrm{d}}[(\sigma_i + \tau)b + \Psi H h_x - \gamma_{GB} h_{xx} H](|h_x| + B)$$

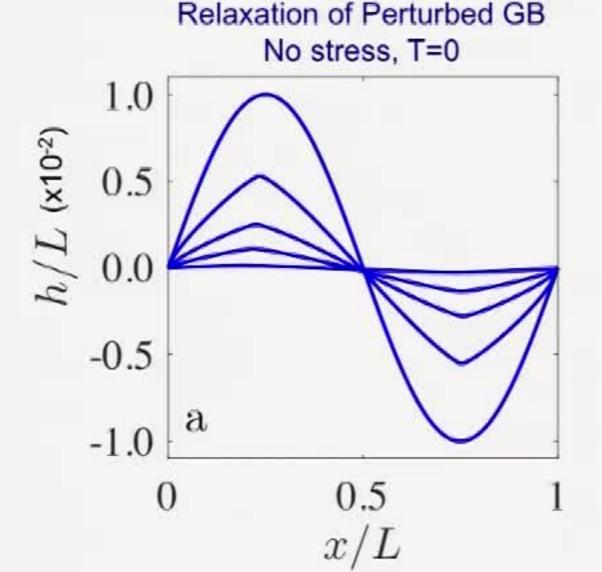
where
$$B = c_e H = (2H/a) \exp(-F_d/kT)$$

Equation of motion

$$h_t = -M_{\mathbf{d}}[(\sigma_i + \tau)b + \Psi H h_x - \gamma_{GB} h_{xx} H](|h_x| + B)$$

where
$$B = c_e H = (2H/a) \exp(-F_d/kT)$$

Two examples (finite difference)

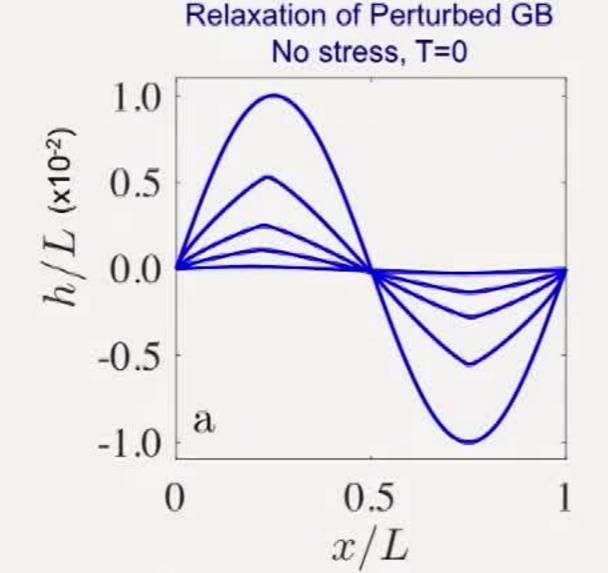


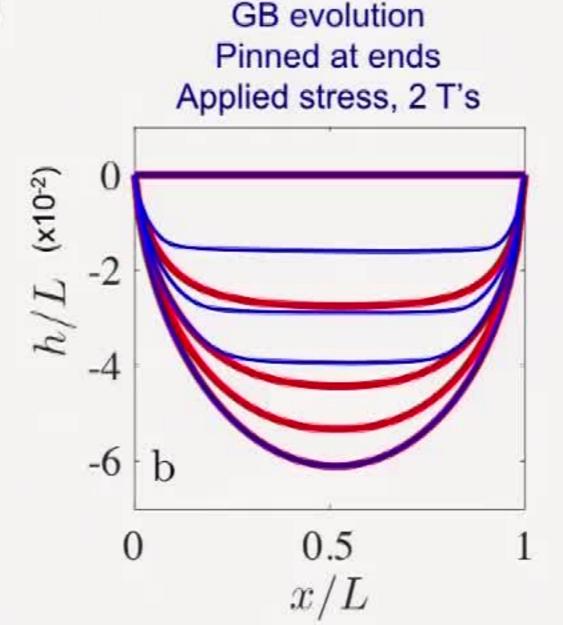
Equation of motion

$$h_t = -M_{\mathbf{d}}[(\sigma_i + \tau)b + \Psi H h_x - \gamma_{GB} h_{xx} H](|h_x| + B)$$

where
$$B = c_e H = (2H/a) \exp(-F_d/kT)$$

Two examples (finite difference)





- In a polycrystal, GBs are not of infinite extent, but end at vertices where 3 grains meet
- Under an applied stress, disconnections nucleate and propagate to the vertices where they are pinned -> disconnections pile-up
- Pile-up generates stress / costs elastic energy

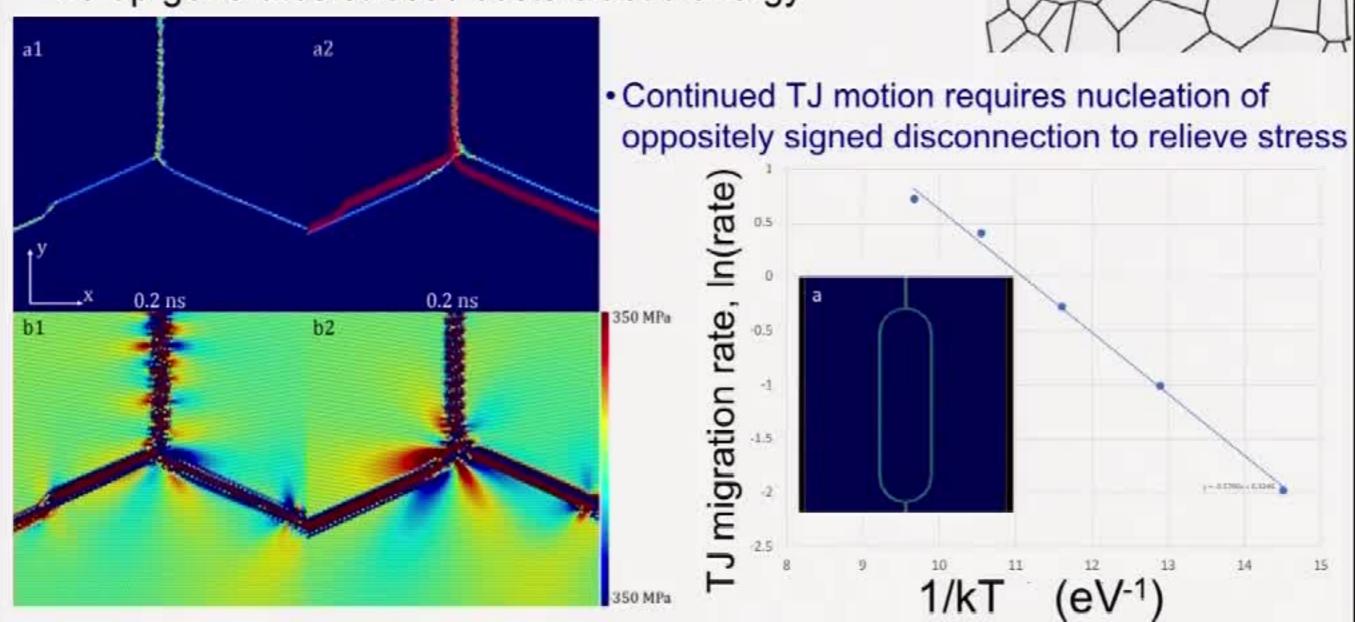


 Continued TJ motion requires nucleation of oppositely signed disconnection to relieve stress

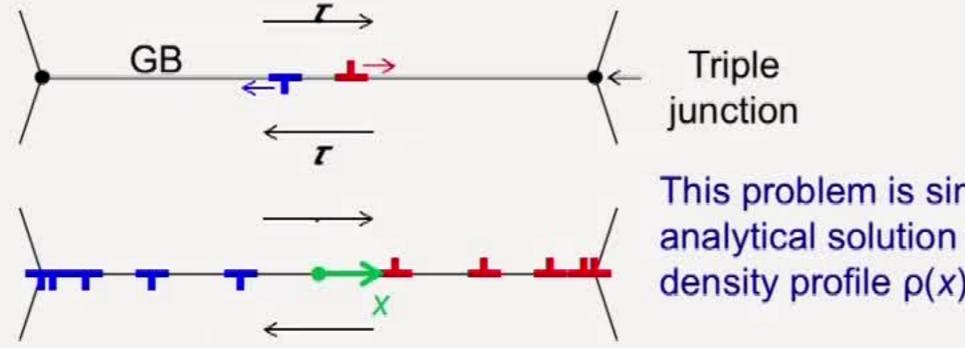
 In a polycrystal, GBs are not of infinite extent, but end at vertices where 3 grains meet

 Under an applied stress, disconnections nucleate and propagate to the vertices where they are pinned -> disconnections pile-up

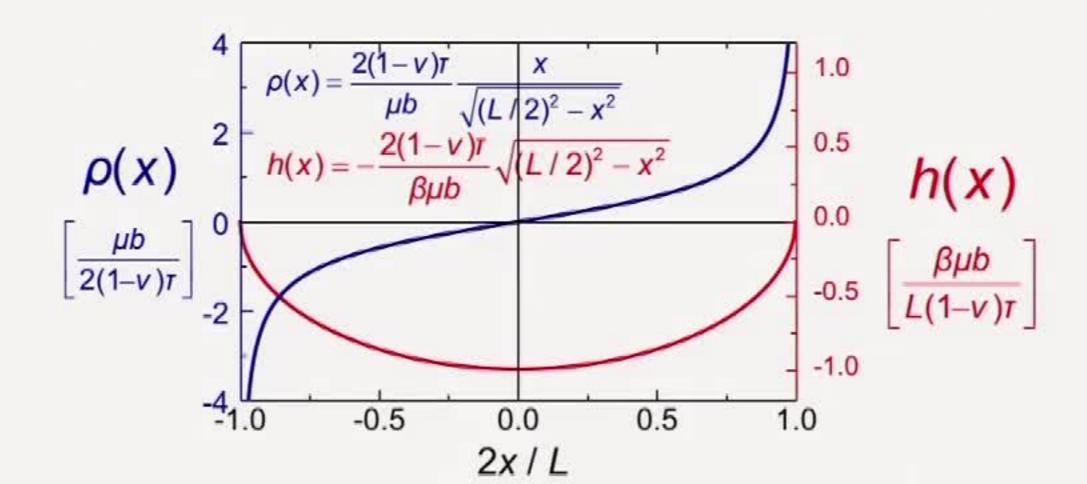
Pile-up generates stress / costs elastic energy



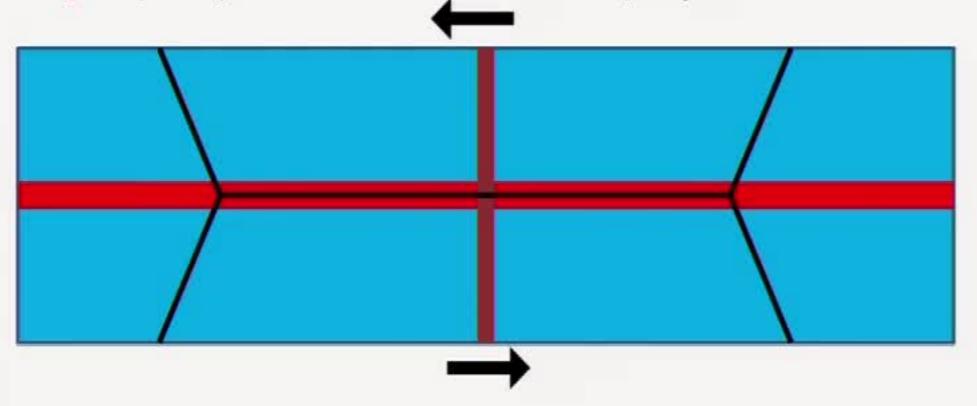
Single-disconnection mode



This problem is simple; analytical solution for disconnection density profile $\rho(x)=h_x(x)/H \rightarrow h(x)$

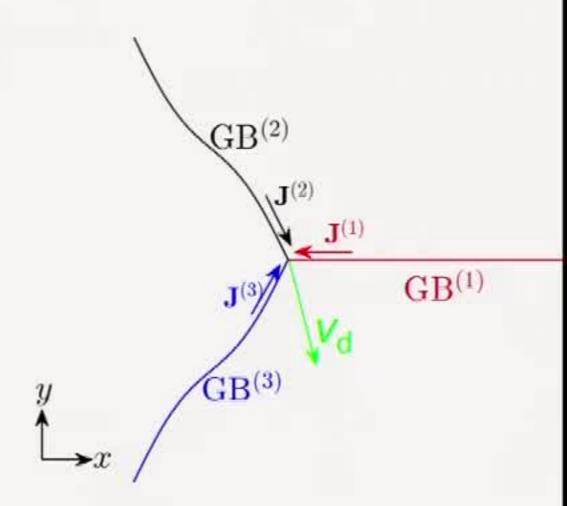


Example: pileup of disconnections at triple junctions



Example: pileup of disconnections at triple junctions $\rho(x) = 0$ h(x)0.0 μb 2(1-v)# -0.5 L(1:v)r Molecular Dynamics Simulations -1.0 Aramfard, Deng (2014) -0.5 0.0 0.5 1.0 2x/L

- If triple junctions (TJs) were really pinned, grain growth would not be possible → triple junctions can move
- Flux of <u>steps</u> from disconnections into TJ moves the TJ



- If triple junctions (TJs) were really pinned, grain growth would not be possible → triple junctions can move
- Flux of <u>steps</u> from disconnections into TJ moves the TJ
- But Burgers vectors may or may not be annihilated at TJs → back stress from Burgers vector accumulation pushes disconnections away from TJ

$$\mathbf{v}_{TJ} = -\sum_{i=1}^{3} H^{(i)} J^{(i)}(\mathbf{x}_0) \mathbf{n}^{(i)}$$

If there is no barrier to disconnection reaction at TJ

$$J^{(i)}(\mathbf{x}_0) = \left(\rho^{(i)}(\mathbf{x}_0) + \frac{B}{2}\right) v_d^{(i)}(\mathbf{x}_0) \quad \bigvee_{x} GB^{(3)}$$

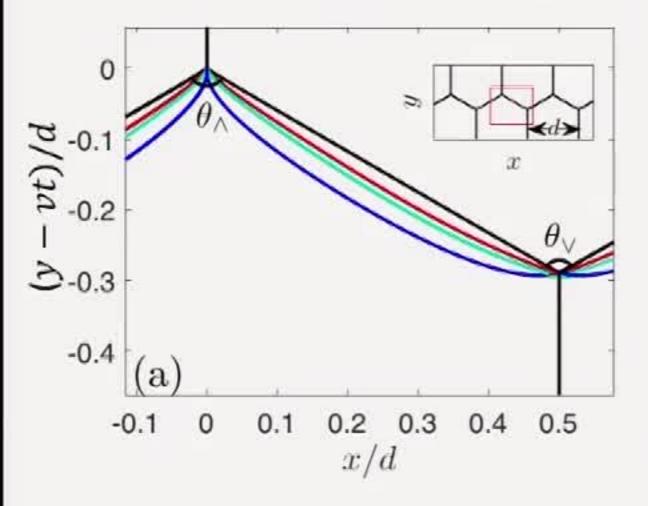
 $GB^{(1)}$

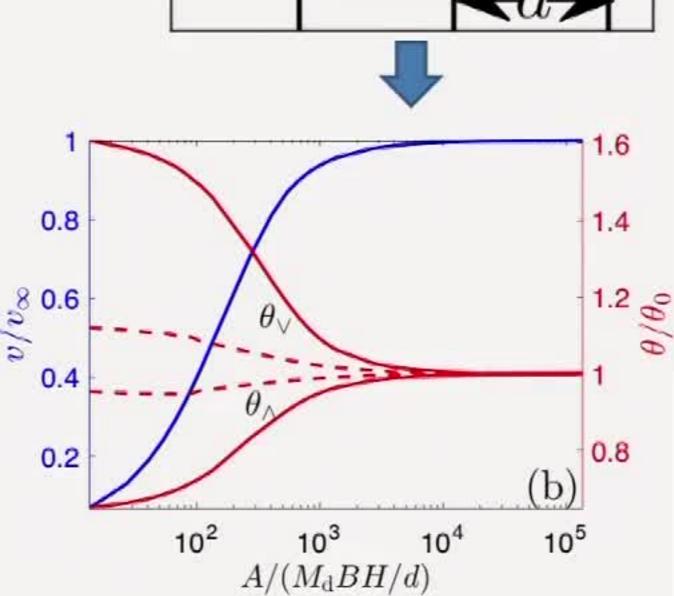
However, if there is a disconnection reaction barrier at the TJ, then $v_d^{(i)}(\mathbf{x}_0)$ should be replaced by the TJ reaction rate/mobility $A^{(i)}$

 Consider a simple example of an idealized polycrystal subject to uniaxial tension

 No shear on vertical GBs; equal and opposite shear on diagonal GBs – mirror symmetry around vertical GBs

TJs move vertically (steady-state)





Conclusions

- GB migration is controlled by disconnection motion
- Disconnections are characterized by BOTH h and b
- Multiple {b,h} pairs for every GB; set by bicrystallography

Conclusions

- GB migration is controlled by disconnection motion
- Disconnections are characterized by BOTH h and b
- Multiple {b,h} pairs for every GB; set by bicrystallography
- Choosing between modes depends on nature of the (local) driving force(s) and temperature
- GB mobility is NOT a material/GB property;
 disconnection properties are

Opportunities and Challenges

- Extension of the equation of motion to include multiple disconnection types {b,h}
- GBs that are not constrained to h_x<<1; multiple reference states
- More general description of TJs
- Numerical model for microstructure evolution (like our curvature flow code)
- Grain boundary mobility
- Grain rotation