Modeling of Complex Fluids: Wormlike Micellar Solutions, Polymers and Mucins

> SIAM Julian Cole Lectureship July 11, 2018

> > Pam Cook University of Delaware

This work was partially supported by NSF-DMS-0807395 and NSF-DMS-0807330

Julian D. Cole 1925-1999 NAE, NAS, AAA&S, SIAM von Karman Prize

(1947 Chuck Yaeger – broke the "sonic barrier")

Perturbation methods

$$\epsilon \frac{d^2 u}{dt^2} + \frac{d u}{dt} + u = o$$
$$\epsilon << 1$$

 $\epsilon u_{,yy} = u_{.t} + uu_{.y}$ partial derivative

Transonic small disturbance equation

2

J.D. Cole books

- Perturbation Methods in Applied Mathematics 1968 Ginn-Blaisdell
- Perturbation Methods in Applied Mathematics 1981, Perturbation Methods in Applied Mathematics 1985, Multiple Scale and Singular Perturbation Methods 1996 (with J. Kevorkian) Springer
- *Similarity Methods for Differential Equations* 1974 (with G. Bluman) Springer
- Transonic Aerodynamics 1986 (with P. Cook) Elsevier

36 PhD students – Cal Tech, UCLA, and RPI

- 18 Journals (newest: Data Science)
- 21 **SIAM Interest Groups** (newest being Applied Mathematics Education, the Mathematics of Planet Earth and this meeting co-located with Materials Science SIAG)
- Books (and discounts for members!)
- **Geographic Sections** (7 US, 5 non US: newest; Texas-Louisiana, Pacific Northwest sections.
- **Student sections**, Gene Golub summer school
- Committees to support SIAMs mission
- Meetings (like this one and smaller more topical meetings)
- Science Policy!
- News
- Prizes

- To all of you who have volunteered, whether through your student section, as an editor or associate editor of a journal, as a minisymposium organizer, as a speaker, as a committee member, ... THANK YOU!
- To all of you in the audience who aren't members, join up! There are many benefits (Book discounts etc.)
- And to those of you who are members its great. SIAM looks forward to your engagement, involvement and suggestions!

Modeling of Complex Fluids: Wormlike Micellar Solutions, Polymers and Mucins

> SIAM Julian Cole Lectureship July 11, 2018

> > Pam Cook University of Delaware

en gentle ta eyes

Polymers, colloidal fluids, wormlike micelles:

- Mucin, bodily fluids (eye tear film, saliva, lung mucous)
- Shampoo/detergent
- Entangled polymers (plastics)
- Foods (ketchup)
- Toys (silly putty, oobleck)

A *polymer* is a long string like molecule made of chemical units (more than several thousands) called monomers. (proteins, rubber)

A *colloid* is a mixture in which small particles are dispersed in a fluid. (milk)

A *wormlike micelle* (surfactants) . . .

HEINZ

TOMAT ETCHU

Complex Fluids

 \circ High viscosity

- Shear thickeningShear thinning
- o Elasticity (recoil)o Extensional fracture

Self healing (self assembling)

Multiple Scales

• Multiple time scales

silly putty

spagetti

- Multiple length scales (micro vs macro)
 - human hair r=25 microns, L=6" aspect ratio L/r = 3,000
 - wormlike micelle r=0.001 micron, L=2 microns aspect ratio L/r = 2,000

Floppy, WORMY

polymer chains https://en.wikipedia.org/wiki/Polymer

Figure 1: A Rheological Chart that mapped the continuum world of complex fluids and soft solids soon after the birth of rheology (L. Bilmes, 1942).

Surfactant MoleculesHydrophilic HeadHydrophobicTail

Wormlike Micelles

Entangled Systems

Clausen et al. (1992) J. Phys. Chem.

Schubert et al. (2003) Langmuir

"Living polymers" – worms break and reform continuously.

Properties depend on temperature, salt concentration etc. Wormlike Micelles in Shear Flow

Shear rate control:

• Newtonian "linear" velocity response

Shear rate control:

At higher velocities shear bands appear --a high shear rate band near the inner wall and a low shear rate band near the outer wall

Hu and Lips (2005) J. Rheology

Shear rate control:

At higher velocities shear bands appear --a high shear rate band near the inner wall and a low shear rate band near the outer wall

Hu and Lips (2005) J. Rheology

Flow curve plateau

shear stress - stress at the inner wall apparent hear rate – inner wall velocity/gap

Miller and Rothstein (2007) JNNFM ¹⁵

Elastic Dumbbell Theory

Q - the dumbbell configuration vector - stretch and direction

Configuration distribution function $\psi(\mathbf{r}, \mathbf{Q}, t)$

Polymer stress:
$$\boldsymbol{\sigma}_p = -\int \mathbf{Q} \mathbf{F}_s(\mathbf{Q}) \psi(\mathbf{Q}, t) d\mathbf{Q}$$

Elastic (Linear) Dumbbell Equations

 $\boldsymbol{\kappa} = (\boldsymbol{\nabla} \mathbf{v})^{t}$

• Langevin - stochastic differential - equation - mesoscale

$$\mathbf{r}_{i}(t+\delta t) = \mathbf{r}_{i}(t) + [\mathbf{v}_{0} + \boldsymbol{\kappa} \cdot \mathbf{r}_{i}(t) - \frac{H}{\zeta}\mathbf{Q}_{ij}]\delta t + \sqrt{\frac{2kT}{\zeta}}\delta\mathbf{W}$$

• Fokker-Planck equation – mesoscale

$$\psi_{t} = -\{ \nabla_Q \cdot (\kappa \cdot \mathbf{Q} - \frac{2kT}{\zeta} \nabla_Q \ln \psi - \frac{2H}{\zeta} \mathbf{Q}) \psi \}$$

• Upper Convected Maxwell Model (UCM) - macroscale

$$\frac{\zeta}{4H}\boldsymbol{\sigma}_{p,(1)} + \boldsymbol{\sigma}_{p} - nkT\mathbf{I} = 0 \qquad \boldsymbol{\sigma}_{p} = -H \int \mathbf{Q}\mathbf{Q}\psi(\mathbf{Q}, t)d\mathbf{Q}$$
$$(\cdot)_{(1)} = \frac{\partial(\cdot)}{\partial t} + (\mathbf{v}\cdot\nabla)(\cdot) - (\nabla\mathbf{v})^{\mathrm{T}}\cdot(\cdot) - (\cdot)\cdot(\nabla\mathbf{v})$$

1. Imposed steady shear flow

$$\dot{\gamma} = \left\{ egin{array}{cc} 0, & t < 0 \ & \ \dot{\gamma}, & t \geq 0 \end{array}
ight.$$

$$\tau \sim G_0 \lambda \dot{\gamma}_0 [1 - e^{-t/\lambda}]$$

$$\begin{split} \lambda \boldsymbol{\sigma}_{p,(1)} + \boldsymbol{\sigma}_p - G_0 \mathbf{I} &= 0 \\ \boldsymbol{\tau} &= -\boldsymbol{\sigma}_p + G_0 \mathbf{I} \end{split} \qquad \begin{aligned} \lambda \boldsymbol{\tau}_{(1)} + \boldsymbol{\tau} &= -\eta_0 \dot{\boldsymbol{\gamma}} \\ \mathbf{I} & \text{Linearization} \end{aligned} \\ \tau(t) &= -\frac{\eta_0}{\lambda} \int_0^t e^{\frac{t'-t}{\lambda}} \dot{\boldsymbol{\gamma}}(t') dt' + \tau(0) & \longleftarrow \lambda \frac{d\tau}{dt} + \tau &= -\eta_0 \dot{\boldsymbol{\gamma}} \\ \text{Memory kernel} \end{aligned}$$

2. Subsequent stress relaxation

Linearized - UCM

$$\dot{\gamma} = \begin{cases} \dot{\gamma}_0, & t < 0 \\ 0, & t \ge 0 \end{cases} \qquad \qquad \tau = -$$

$$\tau = -G_0 \lambda \dot{\gamma}_0 e^{-\frac{t}{\lambda}}$$

Small Amplitude Oscillatory Shear- UCM

$$\lambda \frac{d\tau}{dt} + \tau = -\eta_0 \dot{\gamma}$$

3. SAOS
$$\gamma = \gamma_0 \sin(\omega t)$$

$$egin{aligned} & au = -G'(\omega)\gamma_0 \sin(\omega t) - G''(\omega)\gamma_0 \cos(\omega t) \ & G'(\omega) = G_0 rac{\omega^2 \lambda^2}{1+\omega^2 \lambda^2} & ext{storage modulus} \ & G''(\omega) = G_0 rac{\omega \lambda}{1+\omega^2 \lambda^2} & ext{loss modulus} \ & G'' = G' = \lambda \omega_0 = 1 & \lambda = rac{1}{\omega_0} : ext{relaxation time} \end{aligned}$$

- 50/25 mM CPyCl/NaSal
- 100/50 mM CPyCl/NaSal
- ▲ 200/100 mM CPyCl/NaSal

 2^{nd} (small time, high frequency) relaxation

$$G' = G_0 \left[\frac{(\lambda \omega)^2}{1 + (\lambda \omega)^2} + n_2 \frac{(\lambda_2 \omega)^2}{1 + (\lambda_2 \omega)^2} \right]$$
$$G'' = G_0 \left[\frac{(\lambda \omega)}{1 + (\lambda \omega)^2} + n_2 \frac{(\lambda_2 \omega)}{1 + (\lambda_2 \omega)^2} \right]$$

$$\lambda_2 \ll \lambda$$

• Unusual simplicity, almost single mode despite the polydispersity of the mixture!

• VCM Model – Two-species breaking and reforming UCM variant

Extra Stress:
$$\boldsymbol{\sigma} = \mathbf{A} + 2\mathbf{B}$$

Total Stress: $\boldsymbol{\Pi} = p\mathbf{I} + (n_A + n_B)\mathbf{I} - \mathbf{A} - 2\mathbf{B} - \beta\dot{\boldsymbol{\gamma}}$

Wormlike Micelles – VCM Model

Stress Tensors:

$$\mathbf{A} = \{\mathbf{Q}\mathbf{Q}\}_A = \int \mathbf{Q}\mathbf{Q}\Psi_A d\mathbf{Q}$$

$$\mathbf{B} = \{\mathbf{Q}\mathbf{Q}\}_B = \int \mathbf{Q}\mathbf{Q}\Psi_B d\mathbf{Q}$$

Constitutive Equations:

$$\mu \frac{Dn_A}{Dt} = \delta_A 2 \nabla^2 n_A + \frac{1}{2} c_B n_B^2 - c_A n_A$$

$$\mu \frac{Dn_B}{Dt} = \delta_B 2 \nabla^2 n_A - c_B n_B^2 + 2c_A n_A$$

$$\mu \mathbf{A}_{(1)} + \mathbf{A} - n_A \mathbf{I} = \delta_A \nabla^2 \mathbf{A} + c_B n_B \mathbf{B} - c_A \mathbf{A}$$

$$\epsilon \mu \mathbf{B}_{(1)} + \mathbf{B} - \frac{n_B}{2} \mathbf{I} = \epsilon \delta_B \nabla^2 \mathbf{B} - 2c_B n_B \mathbf{B} + 2c_A \mathbf{A}$$

$$\epsilon, \delta_A, \delta_B << 1$$

Breaking Rate:

$$c_A = \frac{\xi\mu}{3} \left(\dot{\gamma} : \frac{\mathbf{A}}{n_A} \right) + c_{Aeq}$$

Reforming Rate:

$$c_B = \text{constant} = c_{Beq}$$

Constitutive Equations:

$$\begin{split} \mu \frac{Dn_A}{Dt} &= \delta_A 2 \nabla^2 n_A + \frac{1}{2} c_B n_B^2 - c_A n_A \\ \mu \frac{Dn_B}{Dt} &= \delta_B 2 \nabla^2 n_A - c_B n_B^2 + 2 c_A n_A \\ \mu \mathbf{A}_{(1)} + \mathbf{A} - n_A \mathbf{I} &= \delta_A \nabla^2 \mathbf{A} + c_B n_B \mathbf{B} - c_A \mathbf{A} \\ \epsilon \mu \mathbf{B}_{(1)} + \mathbf{B} - \frac{n_B}{2} \mathbf{I} &= \epsilon \delta_B \nabla^2 \mathbf{B} - 2 c_B n_B \mathbf{B} + 2 c_A \mathbf{A} \\ \epsilon \lambda_A, \delta_B << 1 \end{split}$$

Wormlike Micelles – VCM Model

Conservation of mass:

 $\nabla \cdot \mathbf{v} = 0$

Conservation of momentum:

$$\frac{E^{-1}\frac{D\mathbf{v}}{Dt}}{Dt} = -\boldsymbol{\nabla}\cdot\boldsymbol{\Pi}$$

Constitutive Equations:

$$\begin{split} \mu \frac{Dn_A}{Dt} &= \delta_A 2 \nabla^2 n_A + \frac{1}{2} c_B n_B^2 - c_A n_A \\ \mu \frac{Dn_B}{Dt} &= \delta_B 2 \nabla^2 n_A - c_B n_B^2 + 2 c_A n_A \\ \mu \mathbf{A}_{(1)} + \mathbf{A} - n_A \mathbf{I} &= \delta_A \nabla^2 \mathbf{A} + c_B n_B \mathbf{B} - c_A \mathbf{A} \\ \epsilon \mu \mathbf{B}_{(1)} + \mathbf{B} - \frac{n_B}{2} \mathbf{I} &= \epsilon \delta_B \nabla^2 \mathbf{B} - 2 c_B n_B \mathbf{B} + 2 c_A \mathbf{A} \\ \epsilon , \delta_A, \delta_B << 1 \end{split}$$

- 18 coupled nonlinear partial differential equations in 18 unknowns
- In shear flow $\mathbf{v}(x, y, z, t) = (u(y, t), 0.0)$ 9 coupled nonlinear partial differential equations in 9 unknowns
- *Initial conditions* –equilibrium or . . .
- Boundary conditions
 - velocity at the inner wall: De tanh(at)
 - velocity at the outer wall given: 0
 - no flux of number density or stress at the walls

VCM Model

• Nondimensionalization

$$l = rac{l'}{h}$$

$$t = \frac{t'}{\lambda_{eff}}$$

$$De = rac{\lambda_{eff}V'}{h}$$

Parameters

$$\mu = \frac{\lambda_A}{\lambda_{eff}} = O(1)$$

$$\beta = \frac{\eta_s}{\eta_0} = O(10^{-5})$$

$$\epsilon = \frac{\lambda_B}{\lambda_A} = O(10^{-3})$$

$$E^{-1} = \frac{\rho h^2}{\lambda_{eff}\eta_0} << 1$$

$$\delta_{\alpha} = \frac{D_{\alpha}\lambda_{\alpha}}{h^2} << 1$$

- Shear bands: high shear rate near the inner (moving)wall
- High shear rate band spatial extent increases linearly with velocity across the gap
- Stress plateau in the steady flow curve

Zhou et al (2014) JNNFM

Elastic Recoil in Shear Flow(VCM)

• Reverse flow is observed

Zhou et al (2014) JNNFM

Wang et al. (2006a) PRL 1.24X10⁶ PBd /10³ g/mol oligomeric butadiene

http://www3.uakron.edu/rheology/a-startup-shear.htm

Other Predictions of the VCM Model

- Inclusion of inertia allows for multiple banding (depending on the size of the elastic parameter and the rate of the ramp-up initial condition) Zhou et. al, SIAM J. Appl. Math 2012
- On a long time scale diffusive effects dominate, on a short time scale elasticity/elastic waves dominate

Miller, Rothstein J. Non-Newt. Fluid Mech. 2007 Zhou et al. J. Non-Newt. Fluid Mech. 2014

31

Inertial Waves UCM

Inertial Waves VCM

v(y,t) with $v(0,t) = \text{De} \tanh(at)$ Inertial Waves:

Zhou et. al, SIAM J. Appl. Math 2012

32

Other Predictions of the VCM Model

• In channel flow – spurt (formation of high shear rate band at the walls) *Cromer et. al J. Non-Newt. Fluid Mech* 2011

• In extension – fracture is a function of the extension rate. Elastic recoil and sudden fracture. (needs two species model).

Cromer et al. Chemical Engineering Science 2009 Bhardwaj, Miller, Rothstein J. Rheol. 2007

Breaking/Reforming Rates

• VCM model

$$c_B = \text{constant} = c_{Beq}$$

 $c_A = \frac{\xi\mu}{3} \left(\dot{\gamma} : \frac{\mathbf{A}}{n_A} \right) + c_{Aeq}$

• Germann, Beris, Cook (GBC) (nonequilibrium thermodynamically consistent formulation)

??

22

$$c_B = f(\mathbf{B}, n_B)$$

 $c_A = f(\mathbf{A}, n_A)$

Germann et al, J. non-Newt. Fluid Mech. 2013

- Linear springs if nonlinear springs need an *ad hoc* closure
- Breakage/reforming were *ad hoc* at the macroscale no direct connection to attractive energy of beads
- Lack of definition of local (parameter) effects concentration\salt effects on attractive energy of the bead, lack of definition of network topology
- Exponential relaxation where as, as concentration changes relaxation is stretched exponential (not exponential) $\tau(t) \sim G_0 \exp[-(t/\lambda)^{\alpha}]$

Langevin – stochastic differential -equation - mesoscale

$$\mathbf{r}_i(t+\delta t) = \mathbf{r}_i(t) + [\mathbf{v}_0 + \boldsymbol{\kappa} \cdot \mathbf{r}_i(t) - \frac{1}{\zeta} \mathbf{F}_s(\mathbf{Q}_{ij})] \delta t + \sqrt{\frac{2kT}{\zeta}} \delta \mathbf{W}$$

& coupled chain links & broakage referming criteria

breakage reforming criteria (energy)

Chain Length vs. Q distribution (Hookean)

• Steady state distributions under a stretch dependent breakage

Transiently Networked Fluids

sticker oil droplet dead loop

bead-spring network with transient connections, nodes of up to m beads schematic of telechelic polymers (polymer with hydrophobic ends) -spheres represent oil droplets in the water solvent, collection nodes for the hydrophobic polymer ends *Mora, Soft Matter, 2011* 38

Transient Network Model

MUC5B supramolecular network

bead-spring network long chains crosslinked by transiently connected shorter chains

schematic of cross-linked saliva mucin chains *Wagner & McKinley, JOR, 2017*

Contributors to this Work

Paula Vasquez Asst. Prof. Univ. South Carolina

Mike Cromer Asst. Prof. Rochester Inst. of Tech.

Lucas Quintero Current UD

UD PhD students

Gareth McKinley Prof. MIT

Collaborators

Lin Zhou Assoc. Prof. NYC College of Technology, CUNY

Thank you

VCM Underlying Non-monotone Constitutive Curve

The homogeneous constitutive curve is multi-valued.

For shear rate controlled flow:

- In a positively sloped (stable) region the shear rate at the inner cylinder is higher than at the outer cylinder due to curvature.
- In the negatively sloped (unstable) region the (already biased) flow splits further to a high shear rate (near the inner cylinder) & a low shear rate (near the outer cylinder).
- For an appropriate range of times (ramp, inertial, diffusive, imposed flow and relaxation) the inertial wave interferes with the the ramped relaxation creating multiple bands.

Four Scenarios in Steady Shearing Flow

- Case I: Constant mean node life time τ and capture radius *d* (*CMBR*).
- Case II: Mean node life time τ is governed by the force balance between the attractive node and the connected bead-springs, while the capture radius *d* remains constant.

Cifre et al. (2003,2007) JNNFM

- Case III: Both the mean node life time τ and the capture radius *d* depend on the attached chain stretch through the force balance.
- Case IV: Both the mean node life time τ and the capture radius *d* depend on the attached chain stretch through the energy balance.

(Tripathi et al. (2006) Macromoleculus)

Stretch Dependent Breakage and Reforming

• Case III: Balance the maximum force, the force at the edge of an attractive node potential, with the spring force.

Cifre et al. (2003,2007) JNNFM

Detachment:

Attachment:

 $r < \min(d, 2U \downarrow 0/Q)$

 $\tau = \tau \downarrow 0 \exp(-dt^2 Qt^2 / 4U \downarrow 0)$

• Case IV: Balance the node attractive energy with the spring stretch energy. *Tripathi et al. (2006) Macromoleculus*

$$\tau = \tau \downarrow f \ e^{\uparrow} E + \int Q^{\uparrow} Q - d = \tau \downarrow 0 \ e^{\uparrow} - Q d + d^{\uparrow} 2 \ /2$$

 $E = \int Q^{\uparrow}Q + d \, Q \, Q \, yields - r < \min(d, -Q + \sqrt{Q^{\uparrow}2} + 2E)$

Attachment:

Governing equations:

$$\mathbf{r}(t+\delta t) = \mathbf{r}(t) + \Sigma \mathbf{F}^s(t) / f\zeta + \delta \mathbf{w}$$

δW Wiener process $\mathbf{F}^S = H\mathbf{Q}$ Hookean springMean
variance $F^S = \frac{H\mathbf{Q}}{1-(\frac{\mathbf{Q}}{Q_0})^2}$ FENE spring

Attachment/detachment rules:

- Detachment of beads from a node: Assuming that the mean life time of a sticky node is τ , then the probability of detachment or breakage in each time step Δt is given by
- Attachment of a bead to a node: If a bead is within a *capture radius d* of an available node it attaches to

SAOS – Wormlike Micellar Mixtures

Relaxation time: $\lambda = 0.63 \text{ s}$ Plateau modulus: $G_0 = \frac{\eta_0}{\lambda} = 22.6 \text{ Pa}$

 2^{nd} (small time, high frequency) relaxation

$$G'' = G_0 \left[\frac{(\lambda \omega)}{1 + (\lambda \omega)^2} + n_2 \frac{(\lambda_2 \omega)}{1 + (\lambda_2 \omega)^2} \right]$$

$$\lambda_2 \ll \lambda$$

- Appears to be two Maxwell modes well separated in time
- Unusual simplicity, almost single mode despite the polydispersity of the mixture!

Reference here

Properties depend on type of surfactant and on temperature and on salt concentration!!

CPyCl/NaSal $\tau(t) \sim G_0 \exp[-(t/\lambda)^{\alpha}]$

stretched exponential relaxation after step strain

Linear vs. Nonlinear Spring (Single Dumbbell)

Hookean (Linear Spring)

 $\mathbf{F}_s(\mathbf{Q}) = -\mathbf{Q}$

FENE (Finitely Extensible Nonlinear Elastic Spring)

$$\mathbf{F}_s(\mathbf{Q}) = -rac{\mathbf{Q}}{1-rac{Q^2}{Q_0^2}}$$