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Gaps in classical continuum mechanics @iz

e Momentum balance, 1D:

pure = (0(ug))z +b
where u=displacement, o=stress, b—external body force.
e Requires u to be twice continuously differentiable.
e Doesn't apply on cracks or growing discontinuities.
e Predicts infinite stress near defects.

e Can't include nanoscale forces.

Humble Scotch® tape




Peridynamics:* What it is

e |t’s an extension of continuum mechanics to media with cracks and long-range

forces.

i\

Sandia
National _
Laboratories

e |t unifies the mechanics of continuous and discontinuous media within a single,

consistent set of equations.

Continuous body

Continuous body th 2 defect
with a defec

e QOur goals

e Nucleate cracks and seamlessly transition to growth.

e Model complex fracture patterns.
e Communicate across length scales.

Discrete particles

* Peri (near) + dyn (force)




Peridynamics concepts: h) i,
Horizon and family

e Any point x interacts directly with other points within a distance 0 called the “horizon.”

e The material within a distance 9§ of x is called the “family” of x, Hx.

HIx = family of x

SS, J. Mechanics and Physics of Solids (2000)
SS & Lehoucq, Advances in Applied Mechanics (2010)




Peridynamic concept of strain energy

density at a point

Discrete
structuresin a

Continuum Discrete particles solvent

Family of x
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* The strain energy density #(x) is determined by the deformation of the
entire family of x.
 How to describe this dependence? States

Deformation
@




States: Nonlinear analogues of second e,
order tensors
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* Classical theory uses tensors (linear mappings from vectors to vectors).
* Peridynamics uses states (nonlinear mappings from vectors to vectors).

Tensor F
e
Ellipsoid
State Y
—
A

ny shape




States )t

e A state is a mapping whose domain is all the bonds £ in a family.

A (&) = something VE € 'H.

) | YX/@X)
z ond ./Defor'm.ed

bond

X

e Deformation state...

Y [x|{q—x) =y(q) — y(x) = deformed image of the bond

Strain energy density: w(Y)




Operations with states

e [wo operators on states are defined by

AeB= / Ag) -B(&) dVe ...dot product (a scalar)
H
AxB = / A(&) @ B(&) dVe ...tensor product (a 2nd order tensor)
H

e [wo more useful states...

1(¢) =1 VEe'H ...unity state,

X&) =& VEEeH ...identity state.
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Functions of states ) .

e Let W(A) be a scalar-valued function of a state.

e Suppose there is a state Wa (A) such that for any small increment dA,

U(A+dA) — (A) = Ua(A)  dA.

e Then Wa (A) is the Fréchet derivative of U at A.




Potential energy minimization yields the 5,
peridynamic equilibrium equation
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e Potential energy:
@:/(W—b-y) AV,
B

where W is the strain energy density, y is the deformation map, b is the
applied external force density, and B is the body.

e Euler-Lagrange equation is the equilibrium equation:
/ f(q,x) dVq +b(x) =0
Hx
for all x. f is the pairwise bond force density.

e f is found from the Fréchet derivatives of W at x and each q:

f(q,x) = Wy[x[{(q — x) — Wy[q|(x — q).
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Material models

e Recall the equilibrium equation:
[ tax)+bix) =0
H
where (from the first variation of @)
f(q,x) = T[x|(q —x) — Tlg|(x — q).

e TI[x] is the force state obtained from the material model T applied to the
family of x:

T[x] = T(Y[x]).

SS, Epton, Weckner, Xu, & Askari, J. Elasticity (2007)




Examples of material models ) 2.

e Bond-based (each bond responds independently of the others):

B Y(¢) _ X6 - 1€
l<€> _f(saﬁ)ma S = |€|
where s=bond strain. \ Direction of the deformed bond &

e [sotropic solid:

TE) =as+p9, 9=UeX, U=Y-X

where «, 3 are constants and ) is a measure of the volume change in the
family, and U=displacement state.

e Linearized:

T=KeU  K=Wy

where K is the micromodulus double state (second Fréchet derivative).

T(¢) = /H K(€,¢) - U(C) dVe.
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Damage

e Damage is usually treated through bond breakage.

e After a bond & breaks according to some criterion, it no longer carries

any force.

e Typical breakage criterion: prescribed critical bond strain sg:

Y@l -l¢
€]

s >= sg at some timetg

bond strain.

S

means the bond remains broken for all £ > ¢g.

Bond & e

-
—
—

e~~~  BrokenbondY ()




Discontinuities are treated within the S
basic field equations

e When a bond breaks, its load is shifted to its neighbors, leading to progressive failure.

Broken bond
Crack path

Cracking in a composite lamina Impact against reinforced concrete




Emu numerical method )

= Integral is replaced by a finite sum: resulting method is meshless and Lagrangian.

py(x,t) = / f(x',x,t) dVy + b(x,t) —> Py = Z f(xk,x;,t) AVy + b}
H keH

SS & Askari, Computers & Structures (2005)
Tian & Du, SIAM Journal on Numerical Analysis (2014)
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Force states and stress ) e,
e For a homogeneous deformation of a homogeneous body,

oc=Tx*X or 0':/1<§>®£st.
H

e This o is called the partial stress.
e It has the usual mechanical interpretation (force/area).

e For non-homogeneous deformations, in general for this o

V.-o+b#0.

e But there is a more general peridynamic stress tensor for which equality

holds.

* Lehoucq & SS, J. Mechanics and Physics of Solids (2008)
» SS, Littlewood & Seleson, J. Mechanics of Materials & Structures (2014)
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Peridynamic form of thermodynamics

e First law: .
e=TeY +h+r

where e=internal energy density, h=energy transport rate, r=energy source
rate.

e h is usually given by a nonlocal diffusion law such as
h(x) = i k(q,x)(8(q) — 0(x)) dVy

where k is a conductivity, #=temperature.

e Second law:
6n>=h+r

where n=entropy density.

SS & Lehoucq, Advances in Applied Mechanics (2010)
Bobaru, & Duangpanya, J. Computational Physics (2012)
Oterkus, Madenci, & Agwai, J. Mechanics & Physics of Solids (2014)




Fracture in a brittle plate with a lot of
defects

* How do defects join up to form a macroscopic crack?

Metallic glass fracture (Hofmann
et al, Nature 2008)
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Fracture in a brittle plate with a lot of  [{@)&s
defects

VIDEO
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Fracture in an elastic-plastic plate with a (@)=,
lot of defects

VIDEOS

Defects Displacement




Cracks nucleate due to a material )
instability

e Condition for growth of a discontinuity in displacement:

det(LeKel) =0

where K is a tensor-valued state obtained from the second Fréchet deriva-
tives of the strain energy density:

K = Wyy.
A
Au /Unstab
'wme)
I

SS, Weckner, Askari, & Bobaru, Int. J. Fracture (2010)
Lipton, J. Elast. (2014)
Lipton, J. Elast. (2015)
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Multiscale model of a graphene sheet

e Assign strength randomly to grain boundaries.

* This one realization fails at some stress under uniaxial tension.

* Repeating with more realizations leads to statistical distribution of strength of the
polycrystal.

Stressl vs. Strainil
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Microstructure

* Properties of metals are strongly influenced by their microstructure (sizes and
shapes of grains).
* Microstructure evolution is largely about the energetics of grain boundaries.

* Will demonstrate:
* Phase boundaries in peridynamics contain finite energy.
* They dissipate energy as they move.
 They move in the direction of lower total potential energy of the system.

cw s RV
Steel microstructure
Image: R F Cochrane, University of Leeds




Bond-based model for coexistent phases™ [,

»

Elastic bond |
force density Maxwell line
Wiy (§) . e
:
|
I
/ sT- sT+ Bond strain s

g Y T+ I—*V Y - —> O

\ Phase boundary has internal structure in a nonlocal model

*Dayal & Bhattacharya, J. Mechanics & Physics of Solids (2006)

» Elastic bars: Ericksen, J. Elast. (1975)

* Crystals: James, Archive for Rational Mechanics & Analysis (1981)

* Strings: Purohit & Bhattacharya, J. Mechanics & Physics of Solids (2003)

* Lattices: Truskinovsky & Vainchtein, SIAM J. Applied Math. (2005)

* Inelastic continuum: Levitas, Int. J. Solids & Structures (1998)

* 3D elasticity: Abeyaratne & Knowles, Archive for Rational Mechanics & Analysis (1991)

- _________________________________________________________________________________________________________________
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Structure of the phase boundary )
in a peridynamic model

* Hard load problem in a bar.
 The phase boundary contains internal structure, finite width and energy.
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* Dayal & Bhattacharya, J. Mechanics & Physics of Solids (2006)..
I —————————————



Condition for nucleation of a phase )
boundary

e Momentum balance across the phase boundary:

(LAI('ﬁ)@ﬁdVg)n:O or (AT % X)n = 0.

+ phase — phase
e Continuity of displacement in the plane of the phase boundary:
AL
AU = n® AL)X  for some vector AL # 0.
n

e Linear material model: T=Ke U

e The above lead to the following condition:

[C(n®n)]AL = 0.
where C is the fourth order elasticity tensor, C = X o (K o X).

e This condition holds if and only if det[C(n ® n)| = 0. This is formally
the same as loss of ordinary ellipticity in the local theory.




Condition for energy minimization with e,
multiple phases

e Stationary potential energy for 2-phase equilibrium implies

n-(APn)=0 (1)

where P is the Eshelby energy-momentum tensor, defined by

P=W1-T+xY or P:I/V1—[I<£)®X<£)dvﬁ.
H

e (Compare classical version: P = W1 — oFT))

e (1) leads to
A{W — (T -n)e (¥ -n)} =0

which is the 3D peridynamic version of the 1D Maxwell condition for
phase equilibrium
AW —agAe = 0.
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Energy dissipation model for a bond ) ..

e A moving phase boundary must dissipate energy.

e Introduce a dissipative term into the material model:

T(&) = Wx(&)+7(Y (&) +Y(-¢§)
= Wx (&) +7(y(x+€) - 2y(x) + y(x - §)),

where v > 0 is a constant.

e Can show the new term satisfies the dissipation inequality.

e Observe the dependence on the “curvature” of the velocity field — expect
it to be significant only within a phase boundary.

Abeyaratne & Knowles, Archive for Rational Mechanics & Analysis (1991).




Phase boundary seeks out the ) i,
Maxwell line asymptotically

* Peridynamic simulation of a bar using the dissipation model discussed above.
e Perturb the boundary conditions and watch the phase boundary motion.
* The phase boundary moves so the system lowers its energy.

Elastic bond |
force density

wir (¢)
/ Bond strain s (b:zi:ilirlc /
. displacement

g — F V + g ! ! ! ] ! I I: !
Time

Phase boundary position




Deformation gradually reduces the area ()&=,
of a phase boundary in 2D

Plate with ends fixed. Global strain /0 is in the unstable part of the material

model.
Complex microstructure appears at first, then simplifies.

Driving force is the energy stuck in a phase boundary.
VIDEO

Bond force
% density /

Initial strain €0

Colors show bond strain
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Deformation gradually reduces the area ()&=,
of a phase boundary in 2D

Colors show bond strain

NG \/

I\VWI /

X<{//
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Transformation toughening (isothermal) (.

* (Can a phase transformation make a crack try to stay closed?
 Permanent transformation in each bond.

4 Bond force
density /

Bond
L o - - breakage
/Loading
Unloading / Bond strain s

2-phase peridynamic material model with
permanent transformation

Colors show bond strain

33



Transformation toughening, ctd.

i\

* Crack path deviates to avoid the toughened material in front of it.

VIDEO

Colors show bond strain
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Transformation toughening, ctd. ) i
* Crack grows slower in the 2-phase material.

Crack y length
T I

I I I I I I I I I I I

1 Phase

0.7 1 2 Phase i

0.6 r .

0.5 ¢ .

Crack tip position




Free surfaces and material boundaries ) i
can have energy too

VIDEO

Sintering of 4 copper grains

Droplet motion driven by surface tension



Summary L

= By treating discontinuous and continuous deformation within the same
field equations we gain a lot in modeling some aspects of materials
science.

= Autonomous nucleation and growth of defects.
= Phase boundaries evolve according to driving force.
= Defects “do what they want.”

= We avoid the need for supplemental equations that govern defect
evolution.
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