Mathematical models of cell migration with realtime cell cycle dynamics

Mat Simpson

Haridas et al. 2018

@ProfMJSimpson

Beaumont et al. 2015

School of Mathematical Sciences Queensland University of Technology

Cell invasion and the cell cycle

Cell invasion and the cell cycle

Sherratt and Murray 1990; Swanson et al. 2003; Maini et al. 2004; Sengers et al. 2007 and many others

Fluorescent ubiquitination-based cell cycle indicator technology (FUCCI)

The cell cycle:

- i. Gap 1 (G1)
- ii. Synthesis (S)
- iii. Gap 2 (G2)
- iv. Mitotic phase (M)

FUCCI technology

Before FUCCI

- Melanoma spheroid 500-600 μm
- Limited information about cell cycle
- Morphological changes

Beaumont et al. 2015

With FUCCI

- Slice through melanoma spheroid
- Cell cycle related to position
- Cell cycle strongly related to microenvironment

Beaumont et al. 2015

Scratch assay

Connecting mathematical models with experimental images

Connecting mathematical models with experimental images

Fundamental model

Extended model

Cell cycle transition

Extended mathematical model

G1 T_r T_g, division. eS S/G2/M \overline{T}_{y} 0.15_Γ Transition rate (h⁻¹) 0.10 0.05

 $\begin{array}{ccc} T_{r} & T_{y} & T_{g} \\ \text{Cell cycle transition} \end{array}$

0

$$\begin{aligned} \frac{\partial u_r}{\partial t} &= D_r \frac{\partial^2 u_r}{\partial x^2} - k_r u_r + 2k_g u_g (1-s),\\ \frac{\partial u_y}{\partial t} &= D_y \frac{\partial^2 u_y}{\partial x^2} - k_y u_y + k_r u_r,\\ \frac{\partial u_g}{\partial t} &= D_g \frac{\partial^2 u_g}{\partial x^2} - k_g u_g (1-s) + k_y u_y\\ s &= u_r + u_y + u_g \end{aligned}$$

Fundamental mathematical model

$$\frac{\partial v_r}{\partial t} = \mathcal{D}_r \frac{\partial^2 v_r}{\partial x^2} - \kappa_r v_r + 2\kappa_g v_g (1-s),$$

$$\frac{\partial v_g}{\partial t} = \mathcal{D}_g \frac{\partial^2 v_g}{\partial x^2} - \kappa_g v_g (1-s) + \kappa_r v_r,$$

$$s = v_r + v_g$$

Parameter estimates: transition rates

Parameter estimates: diffusivities

 $\mathcal{D}_r = \mathcal{D}_g$

Haass et al. 2014

C1861 cell line

1205Lu cell line

$$\frac{\partial u}{\partial t} = u(1-u) + \frac{\partial^2 u}{\partial x^2} \qquad u(x,t) = U(z), \quad z = x - ct$$

$$\frac{\partial u}{\partial t} = u(1-u) + \frac{\partial^2 u}{\partial x^2} \qquad u(x,t) = U(z), \quad z = x - ct$$

$$U'' + cU' + U(1 - U) = 0$$

$$\lim_{z \to \infty} U(z) = 0, \quad \lim_{z \to -\infty} U(z) = 1$$

$$\frac{\partial u}{\partial t} = u(1-u) + \frac{\partial^2 u}{\partial x^2} \qquad u(x,t) = U(z), \quad z = x - ct$$

$$U'' + cU' + U(1 - U) = 0$$

$$\lim_{z \to \infty} U(z) = 0, \quad \lim_{z \to -\infty} U(z) = 1$$

$$U' = V, \quad V' = -cV - U(1 - U)$$

$$\frac{\partial v_r}{\partial t} = \mathcal{D}_r \frac{\partial^2 v_r}{\partial x^2} - \kappa_r v_r + 2\kappa_g v_g (1-s),$$
$$\frac{\partial v_g}{\partial t} = \mathcal{D}_g \frac{\partial^2 v_g}{\partial x^2} - \kappa_g v_g (1-s) + \kappa_r v_r,$$

$$t^* = \kappa_g t \qquad x^* = x \sqrt{\frac{\kappa_g}{\mathcal{D}_r}}$$

$$\mathcal{D} = \frac{\mathcal{D}_g}{\mathcal{D}_r} \qquad \kappa = \frac{\kappa_r}{\kappa_g}$$

$$\frac{\partial v_r}{\partial t} = \frac{\partial^2 v_r}{\partial x^2} - \kappa v_r + 2v_g(1-s),$$
$$\frac{\partial v_g}{\partial t} = \mathcal{D}\frac{\partial^2 v_g}{\partial x^2} - v_g(1-s) + \kappa v_r.$$

$$z = x - ct \quad v_g(x, t) = V(z) \quad v_r(x, t) = U(z)$$

$$U'' + cU' - \kappa U + 2V(1 - U - V) = 0,$$
$$V'' + \frac{c}{\mathcal{D}}V' + \frac{\kappa}{\mathcal{D}}U - \frac{1}{\mathcal{D}}V(1 - U - V) = 0.$$

U > 0, $\lim_{z \to -\infty} U(z) = 0$ and $\lim_{z \to \infty} U(z) = 0$,

V > 0, $\lim_{z \to -\infty} V(z) = 1$ and $\lim_{z \to \infty} V(z) = 0$.

 $\mathcal{D}\lambda^4 + c(\mathcal{D}+1)\lambda^3 + (c^2 - 1 - \mathcal{D}\kappa)\lambda^2 - c(1+\kappa)\lambda - \kappa = 0.$

 $\mathcal{D} = 1$ $\lambda_1^{\pm} = -\frac{1}{2}c \pm \frac{1}{2}\sqrt{\alpha^-(\kappa,c)} \qquad \lambda_2^{\pm} = -\frac{1}{2}c \pm \frac{1}{2}\sqrt{\alpha^+(\kappa,c)}$ $\alpha^{\pm}(\kappa,c) = 2\kappa + c^2 + 2 \pm 2\sqrt{\kappa^2 + 6\kappa + 1},$

$$c_{\min}(\kappa) = \sqrt{-2\kappa - 2 + 2\sqrt{\kappa^2 + 6\kappa + 1}}$$

$$\mathcal{D} = 1$$
 $c_{\min}(\kappa) = \sqrt{-2\kappa - 2 + 2\sqrt{\kappa^2 + 6\kappa + 1}}$

What about individual cells?

What about individual cells?

Alternative continuum description

$$R_{k}(t) = \frac{1}{N} \sum_{n=1}^{N} \mathbf{R}_{k}^{(n)}(t), \forall k = 1, 2, ..., K,$$
$$Y_{k}(t) = \frac{1}{N} \sum_{n=1}^{N} \mathbf{Y}_{k}^{(n)}(t), \forall k = 1, 2, ..., K,$$
$$G_{k}(t) = \frac{1}{N} \sum_{n=1}^{N} \mathbf{G}_{k}^{(n)}(t), \forall k = 1, 2, ..., K,$$

Alternative continuum description

$$R_{k}(t) = \frac{1}{N} \sum_{n=1}^{N} \mathbf{R}_{k}^{(n)}(t), \forall k = 1, 2, ..., K,$$
$$Y_{k}(t) = \frac{1}{N} \sum_{n=1}^{N} \mathbf{Y}_{k}^{(n)}(t), \forall k = 1, 2, ..., K,$$
$$G_{k}(t) = \frac{1}{N} \sum_{n=1}^{N} \mathbf{G}_{k}^{(n)}(t), \forall k = 1, 2, ..., K,$$

 $\frac{\mathrm{d}R_k}{\mathrm{d}t} = \begin{cases} + \text{ increase in occupancy of red agents at site } k \text{ due to migration of red agents into site } k \\ - \text{ decrease in occupancy of red agents at site } k \text{ due to migration of red agents out of site } k \\ - \text{ decrease in occupancy of red agents at site } k \text{ due to red agents transitioning to yellow} \\ + \text{ increase in occupancy of red agents at site } k \text{ due to green agents transitioning to red} \\ = \frac{M_r}{6} \left[(1 - T_k) \sum_{s=1}^6 R_s - R_k \sum_{s=1}^6 (1 - T_s) \right] - \mathcal{R}_r R_k + \frac{\mathcal{R}_g}{6} \left[G_k \sum_{s=1}^6 (1 - T_s) + (1 - T_k) \sum_{s=1}^6 G_s \right], \end{cases}$

Alternative continuum description

$$\begin{aligned} \frac{\partial R}{\partial t} &= D_r \nabla \cdot \left[(1 - T) \nabla R + R \nabla T \right] - \mathcal{R}_r R + 2 \mathcal{R}_g G (1 - T), \\ \frac{\partial Y}{\partial t} &= D_y \nabla \cdot \left[(1 - T) \nabla Y + Y \nabla T \right] - \mathcal{R}_y Y + \mathcal{R}_r R, \\ \frac{\partial G}{\partial t} &= D_g \nabla \cdot \left[(1 - T) \nabla G + G \nabla T \right] - \mathcal{R}_g G (1 - T) + \mathcal{R}_y Y, \end{aligned}$$

$$D_r = \lim_{\Delta \to 0} (M_r \Delta^2)/4$$
, $D_y = \lim_{\Delta \to 0} (M_y \Delta^2)/4$ and $D_g = \lim_{\Delta \to 0} (M_g \Delta^2)/4$

Conclusions

- New (extended) continuum models for cell migration and proliferation explicitly tracking the cell cycle within a population of cells
- Connecting new models with experimental data
- Future work:
 - Formal analysis of travelling wave solutions
 - Experimental: modelling the action of anti-cancer drugs

Biophysical Journal Article

Mathematical Models for Cell Migration with Real-Time Cell Cycle Dynamics

Sean T. Vittadello,¹ Scott W. McCue,¹ Gency Gunasingh,² Nikolas K. Haass,^{2,3} and Matthew J. Simpson^{1,*}

¹School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia; ²The University of Qι The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Brisbane, Queensland, Aus ³Discipline of Dermatology, Faculty of Medicine, Central Clinical School, University of Sydney, Sydney, New South Wales, Austra

Stochastic models of cell invasion with fluorescent cell cycle indicators

Matthew J. Simpson ^{a,*}, Wang Jin ^a, Sean T. Vittadello ^a, Tamara A. Tambyah ^a, Jacob M. Ryan ^a, Gency Gunasingh ^b, Nikolas K. Haass ^{b,c}, Scott W. McCue ^a

^a School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia

^b The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, 37 Kent St, Woolloongabba, Brisbane, QLD 4102, Australia

^c Discipline of Dermatology, Faculty of Medicine, Central Clinical School, University of Sydney, Sydney, NSW, Australia

Acknowledgements

Nikolas Hass, UQ

Sean Vittadello, QUT

Gency Gunasingh, UQ

Scott McCue, QUT

Australian Government

Australian Research Council

Mat Simpson, QUT

PhD sch a shi a sh

Link back to Fisher-Kolmogorov

$$c_{\min} = \sqrt{2\mathcal{D}_r \left(-\kappa_r - \kappa_g + \sqrt{\kappa_r^2 + 6\kappa_r \kappa_g + \kappa_g^2}\right)}$$
$$\mathcal{D}_r = \mathcal{D}_g$$
$$c_{\min} \sim 2\sqrt{\kappa_r \mathcal{D}_r} (1 - \kappa_r / \kappa_g) \text{ as } \kappa_r / \kappa_g \to 0$$
$$c_{\min} \sim 2\sqrt{\kappa_q \mathcal{D}_q} (1 - \kappa_q / \kappa_r) \text{ as } \kappa_g / \kappa_r \to 0$$