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Biology is the new physics

The increasing use of mathematics in biology is both inspiring

rescarch in mathematics and creating new carcer options for

mathematical biologists

Philip Hunter

iology has long been the stepchild
B of the natural sciences. Compared
with mathematical proofs, physical
formulac and the molecules of chemistry,
biclagy, like life itself, has often seemed
unquantifiable, unpredictable and messy.
Yet, scientists have striven gallantly to pin
biology dawn through the application of the
other natural sciences. Ever since Gregor
Mendel (1822-1884) formulated the laws
of heredity, biology has slowly transformed
itself into a ‘hard’ science. In facy, research
in biclogy and medicine depends increas
ingly on mathematics and computation,
with profound consequences for those fields
and for the skills needed to conduct research
and clinical development. The conversion
of hiology inlo a more quantifiable science
will continue to the extent that it might even
become the main driving force behind inno-
vation and development in mathematics.
This, atleast, is the view of Michael Ma
President of the Society for Mathematical
Biology, which aims to foster international
interactions between the twe hields.

The conversion of biology into
amore quantifiable science will
continue to the extent that it
might even become the main
driving force behind innovation
and development in mathematics

“For many ycars the inspiraion for
innovation in applied mathematics
come from ph i
in this century it will come from the bio
logical sciences, broadly defined,” Mackey
explained, adding that this switch has been
taking place slowly over several decades.
While physics has stagnated, waiting for
new theorelical insighls to make progress
against fundamental problems such as
quantum gravity, Mackey argued, theoreti-
cal biology has emerged as a new source

of inspiration for mathematicians. “In my
10 plus years of research, | have found that
problems in biomathematics almost always
uncover unexplored and undeveloped arcas
of mathematics,” he said. “These are areas
that mathematicians have not even thought
about exploring. New mathematics.”

nigques have been developed to tackle

specific problems, but biclogy has also
stimulated fundamental progress in mathe-
malics, according to Jiirgen Jost, Director of
the Max Planck Institute for Mathematics in
the Sciences in Leipzig, Germany. Jost cited
the field of information geometry, which first
cmerged as a method to combine geometry
and slaustical probability theory to tackle
problems in other scientific fields including
physics and cconomics. “The new field of
information geometry clraws a lot [of] inspi
ration from information processing in bio-
logical systems, from the cell to the brain,”
he explained.

Information geometry is increasingly
applied across a range of biology disciplines
at different scales of time and space. For
example, in proleomics, it is used lo ana-
lyse interactions between macromolecular
complexes; in modelling epidemics, it is
able Lo account for more complex and sub-
tle differences in quantities, such as rates of
infection among populations, than previ-
ous approaches. Indeed, the reason for the
growing use of information geometry across
biological and medical research is that itis
able of allowing for non-uniformity in
stems under study, whether at the scale
of a protein, cell, pathway or ecosystem. In
essence, information geometry combines
geometry with probability theory to model
changing, complex and nonlinear systems.

Other techniques have evolved alongside
information geometry lo analyse interac
tions between processes that cperate across
a huge range of spaliolemporal scales.
The human immune system, for example,

l n some cases, new mathematical tech-

physics, chemistry and biology

lealure

involves events at the level of individual
gene expression or protein interactions that
take place in nanoseconds; cellular mecha
nisms or body wide events that can take
minules, hours or days; and interactions
between people or even whole popula
tions that last months and years. Irying to
understand these systems involves bridging
different layers and scales, and this need,
Jost points out, has driven developments in
mathematical biology.

he apphication of mathematics to bio-
ogy itsell is hardly new and dates

ack at least to Mendel and his work

on the inhertance of traits in the mid-
nineteenth century. This led eventually to
the theory of Mendelian inheritance as the
foundation of modern genetics for all sexu
ally reproducing organisms, which ass
thal trails are passed down as whole unils
on a digital basis, rather than being watered
dewn in an analogue fashion. In this case,
the mathematics was straightforward:
simple probability theory applied to trait
inheritance. The difference in the present
relationship between biology and math-
ematics is that there is now a two-way trade
in ideas and rescarch, which lcads to more
complex lools and applications In and
across both sciences.

...mathematical biology is now

spreading beyond fundamental

questions and is starting to yield
practical benefits

Another difference is thal mathemati-
cal bioclogy is now spreading beyond fun
damental questions and is starting to yield
practical benefits. ILis being applied widely
in cancer research, for instance, to both
model the growth and metastasis of tumours
and 1o understand why lreatment some-
times fails. According to Mark Chaplain,
Head of the Mathematics Division at the
University of Dundee in the UK, the appli
cation of mathematical techniques has led
to substantial progress in three key areas of
cancer research,

The first is a series of developments in
modelling tumour induced angjogenesis
the process by which new blood vessels
are formexl as the lumour grows. This was
previously poorly understood and, accord
ing to Chaplain, involves irregular small-
scale processes thal cannol be lackled with
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Expanding the Biology Toolkit

Fun with Chemistry

Carolyn Bertozzi
Stanford University & HHMI

Whether you call it biochemistry, molecu-
lar pharmacology, or chemical biology, one
thing we can agree on is that chemists
have long sought to advance the biological
sciences. Through development of reagents,
instruments, algorithms, and technologies,
chemistry brings to biology the ability to drill
down to molecules, bonds and atoms—the
scale of matter at which all living things
converge on common principles. But one
often hears the dogma that “you can teach

Mathematical Laws of Randoemness

Hao Ge
Peking University

The stochastic processes of transcription
and translation inside cells can be described
mathematically by a Chemical Master Equa-
tion (CME) model, typically simulated by the
Gillespie algorithm. Recently, a simple two-
state CME model combined with the in vitro
single-molecule experiments has revealed
the molecular basis for the transcriptional
burst under an induced condition in prokary-
oticcells(Chong, S., etal., Celf 158, 314-326).
The large deviation principle, a highly so-

Leading Edge

Computing Power for Genomics

£

Jian Ma and Olgica Milenkovic
University of lllinois at Urbana-Champaign

Genomics research is undergoing a para-
digm shift thanks to the development of a
myriad of new high-throughput systems for
massive data acquisition. These data come
with the promise of unprecedented insights
into fundamental molecular and cellular
mechanisms and the potential for devel-
oping models that explain how genomes
and regulatory networks function during
development and how they differ across
species and change in disease state.
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tomic dynamics

Which kind of
physical/chemical processes
can be described by

!'_ stochastic processes?

« Mesoscopic scale (time and space)

 Single-molecule and single-cell
(subcellular) dynamics

» Trajectory perspective




Single-molecule experiments
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Single-cell dynamics (in vivo)
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$ Central Dogma

DNA synthesis
(replication)

DNA

RNA synthesis
(transcription)

RNA
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protein synthesis Protein | 1- 10 1-10°
(translation)

PROTEIN ]
Not enough attention has
! ’ been paid to this fact.

amino acids



‘L Regulation of gene expression

* RNA poymerase An example of gene circuit
/ with positive feedback:
| Lac operon
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Bimodal distributions in biology:

multiple phenotypic states
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Two-state model with
positive feedback

(A) A minimal gene-regulation network
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Mean-field deterministic model

i with positive feedback
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Interconversion of different
ﬁ phenotypic states

How to quantify the transition rates
between different phenotypic states,
provided their existence?
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Choi, et al., Science (2008) Gupta, et al., Cell (2011)




Three time scales and three
different scenarios

(1) : cell cycle(y)
(i) : gene - state switching ( f,hn(n—1))
(111) : synthesis rate of protein(Kk,)

Slow Rapid
When stochastic gene-state switching is extremely rapid

. - - Ao, et al. (2004);
( I ) ( 11 ) ( I ) Huang, et al. (2010);...
When stochastic gene-state switching is extremely slow
- = - = = = Qian, et al. (2009);
( Il ) ( I ) ( 11 ) Wolynes, et al. (2005);...
i_When stochastic gene-state switching is relatively slow 1
- - - - - - Wolynes, et al. (2005);
( ) (“) (”I) Ge, et al. (2015) I
I When the time scales of (ii) and (iii) are comparable I
Assaf, et al. (2011);
1 (1) (H)HT) et oty



Bursty dynamics and relatively
slow gene-state switching
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A single-molecule fluctuating-
i rate model is derived

Rescaled dynamics

(A) klyf;}—l >>)/ (B) kl > f;]_l;)/
Continuous Mean-field limit Fluctuating-rate model
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Stochastic dynamics of
iﬂuctuating-rate model

dx  kyq

hx?

\
\H

5------$

dx

Ge, H., Qian, H. and Xie, X.S., PRL (2015)



Nonequilibrium landscape
function emerges

dx
Zr = 9(0) —yx
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Rate formulae associated
imth the landscape function

Gene- state switching is relatively slow Gene-state switching is extremely slow
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Compared to previous rate

i formulae for bursty dynamics
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Rigorous analysis:
i quasi potential in LDP

Local: The Donsker-Varadhan large
deviation theory for Markov process

=

Global: The Freidlin-Wentzell large deviation
theory for random perturbed dynamic system

D 4

LDT of Fluctuating-rate model (Switching ODE)

See Chapter 7 in Freidlin and Wentzell: Random Perturbations of Dynamical Systems (2" Ed). Springer 1984

Faggionato A. et al.: Non-equilibrium thermodynamics of piecewise deterministic Markov processes, JSP (2009)



Fluctuating-rate model

for Lac operon

(A)

dM

dt
dy

dt
I

dt

Positive feedback (PF)
+ multiple gene states

Cell Membrane
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Not widely present in
previous models, but
absolutely necessary here
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Ge, H., Wu, P.P., Qian, H. and Xie, X.S.: Plos Comp Biol (2018)



Single-molecule fluctuation
i broadens bistability with PF

Mean-field model

Steady-state hysteresis
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Stochastic bistability without
PF is impossible

@ : the ratio of operon-state switching rates with respect to the wild-type cells
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Stochastic bistability with PF:
stabilizing the induced state

Without feedback With feedback
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With the help of PF, gene-state switching
does not have to be extremely slow!

Ge, H., Wu, P.P., Qian, H. and Xie, X.S.: Plos Comp Biol (2018)



Slow operon-state switching:
stabilizing the uninduced state
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Transition rates distinguishing
two categories of bistability

Log(Transition rates)
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i Summary

® Stochastic processes become more and more popular to
model the mesoscopic biophysical dynamics, especially in
single-cell biology.

®\\/e proposed a single-molecule fluctuating-rate model in
an intermediate scenario, which is significantly simpler
than the full Chemcal-Master-Equation description. Also
we derived an associated saddle-crossing rate formula for
the phenotype.

®\\e apply the fluctuating-rate model to Lac operon
system, showing why and how the stochastic gene-state
switching broads the parameter region for bistability.
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