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The immune system is a distributed complex system
composed of circulating random detectors

Naive lymphocytes (detectors) circulate (patrol) via blood and lymph.
Naive B lymphocytes are born in the bone marrow and can be triggered to produce antibodies.

Naive T lymphocytes are born and selected in the thymus and can differentiate into
helper (CD4) or killer (CD8) T cells.

Each lymphocyte express a randomly generated protein (receptor) that by chance binds a very
small fraction (<107) of the proteins (ligands) in our environment.

After binding cognate ligand, naive cells expand and “decide” on their effector function.

Decisions are remembered because a fraction of the cells persist as “memory” cells (immunity).
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How can10* genes make 108 proteins!?

DNA Protein

DNA makes RNA makes protein



variants: diversity by combinatorics,
and random insertions and deletions
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Formation of T cell receptors: reshuffling of gene segments
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The naive repertoire is extremely diverse (10® < R < 10! receptors). -
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Statistical inference of the generation probability
of T-cell receptors from sequence repertoires

Anand Murugan?, Thierry Mora®, Aleksandra M. Walczak¢, and Curtis G. Callan, Jr.2¢"
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How is this huge diversity
“ecosystem” of so many com

neting

maintal

ned in an

nopulations?

* All naive T cells basically compete for a single resource (IL-7) -> exclusion

* Naive T cells require contacts with cognate self-antigen -> niche differentiation

* At young age populations are maintained by immigration (from the thymus)
but this source vanishes after puberty -> late exclusion

* Diversity of TCRs in young and elderly people differs “only” 2-fold

* The time scale of the competitive exclusion depends on cellular lifespans

* Naive T cells are long-lived (5-10 y) & memory T cells short-lived (6 mo).

* BTW naive and memory T cells compete for different resources.



How long do T cells live in humans?
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Human naive T cells have an average lifespan of 5-10 vy
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Aged (M) and young (™) volunteers drink deuterated water for 8-9 weeks.
By mass spec we track the enrichment in DNA of naive T cells. Modeling translates this into a life span
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TREC is a DNA circle
produced when
the TCR re-arranges.

TRECs not duplicated
upon division.

TRECs are long-lived:
iIn humans they persist for decades after thymectomy
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Thymus accounts for <20% of the production of naive T
cells in young humans adults and for <2% in healthy elderly
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Consider a highly diverse naive T cell pool in which
thymic output is the only source of new clonotypes
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Let’s start with a “neutral” model where all
populations have the same division and death rates
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A BDI model for naive T-cell dynamics

Event driven dynamics on the level of the full pool:
remove a single cell and replace with a new one

Two (known) coming from the thymus (8) or a division event (1-6)
parameters:

Naive T-cell pool
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i P with & cells 7O~ it ) i
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NG 0

Markov-chain of a single clonotype
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Now the data — e s
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PCR amplification protocol Bioinformatics
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Sequencing of TCR mRNA involves two sampling steps

Naive T-cell pool

Cells in FACS-sorted sample

~ 10> UMls

A few cells may contribute several mMRNAs and then seem to represent large clonotypes



TCRA and TCRB mRNA from naive CD4+ and CD8+ T cells
sampled from blood in two healthy adult volunteers
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Large naive clonotypes have high production probabilities

* Some TCRs are made much : 2
more easily than others |
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* Generation probabilities of
all TCRA and TCRB sequences

determined with IGoR
(Marcou, Nat. Comm. 2018)
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Supports neutrality: if TCR-based competition (niches) would
dominate naive T-cell dynamics, one would not expect this.

To what extent can generation probabilities explain clone-sizes of naive T-cells?
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A BDI model for naive T-cell dynamics

Event driven dynamics on the level of the full pool:
remove a single cell and replace with a new one

Two (known) coming from the thymus (8) or a division event (1-6)
parameters:

Naive T-cell pool
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Markov-chain of a single clonotype
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Steady-state solution of the model allows us to
oredict the full clone-size distribution
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Sequencing of TCR mRNA involves two sampling steps

Naive T-cell pool

Binomial sample

Cells in FACS-sorted sample Binomia | samp | -

MRNA-molecules sequenced

~ 10> UMls

A few cells may contribute several mMRNAs and then seem to represent large clonotypes
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l l 1 Incidence

So a few clones are very large. —
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l l 1 Incidence

Solve the mRNA problem by making

3 sub-samples before RNA-extraction |==™
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Study aging by NGS sequencing of TCR repertoire

Sample diversity, unique

TCR beta clonotypes per 10° T cells
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Richness during aging not at steady state
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Steady state repertoire is aging

* steady state
diversity declines

* largely because
small clones tend
to go extinct

* middle-sized
clones fill in and
become larger

* large clones
remain the same
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Steady state repertoire is aging
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Conclusions

Most naive clones are expected to be very small, but a few are very large.
Large clonotypes tend to have high generation probabilities
A neutral BDI model is sufficient to explain the TCRA data and most of the TCRB data

VDJ-recombination probabilities dominate over TCR-dependent fitness differences in
shaping the naive T-cell pool. Tonic signaling is neutral.

Repertoire diversity erodes by aging, but very slowly.
Aging enriches for easy-to-make clones (testable prediction)

V(D)J recombination shapes the distribution of
TCR chains in the naive T-cell repertoire
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CD4 Enrich for naive clones by removing
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