Modeling Lipid Membrane at Celluar to Subcelluar Scales: Numerical Simulations 2018 SIAM Conference on Life Sciences, August 6-9, Minneapolis

Accurate Gradient and Force Computation for Elliptic Interface Problems

Weihua Geng

Department of Mathematics Southern Methodist University

Joint work with <u>Shan Zhao</u>, University of Alabama Fund: National Science Foundation, USA

Elliptic Interface Problems

 $\nabla \cdot (\beta(\mathbf{x}) \nabla u(\mathbf{x})) - \kappa(\mathbf{x}) u(\mathbf{x}) = q(\mathbf{x}), \quad \mathbf{x} \in \Omega \setminus \Gamma, \quad \Omega = \Omega^+ \cup \Omega^ [u](\mathbf{X}) = w(\mathbf{X}), \quad [\beta(\mathbf{X}) u_n(\mathbf{X})] = v(\mathbf{X}), \quad \mathbf{X} \in \Gamma,$

<u>Outline</u>

• Molecular Simulation and Solvent Models

- Matched Interface and Boundary Methods

 The Capture of Interface Jumps
 The Regularization of Singular Sources
- Force and Gradient Computation Using MIB

• Summary and Future Work

Molecular Simulation

Molecular Mechanics (Newton's Laws of Motion)

Solvent Models

Explicit solvent model

- Atomic level description
- Computationally demanding

Implicit solvent model (e.g. Poisson-Boltzmann)

- Water approximated as a continuum
- Ions described by
- a statistical distribution
- Reduced computational cost

Poisson-Boltzmann (PB) Equation

Numerical Challenges:

- 1. Interface Jump Conditions
- 2. Complex molecular surface
- 3. Singular atomic charge distribution $\sum q_i \delta(\mathbf{x} \mathbf{x}_i)$
- 4. Boundary condition at infinity

$$\lim_{|\mathbf{x}|\to\infty}\phi_2(\mathbf{x})=0$$

 N_c

i=1

Poisson-Boltzmann Application

Chemistry: interfaces and colloids

- Pioneering work: Chapman (1913), Gouy (1910), Debye-Hückel (1923)
- Analytical and numerical work: Kirkwood (19\$4), Carnie (1994), Lenhoff (1994)
- Applications: Moallemi et al. (2011), Duval et al. (2011), Dunér et al. (2012), Mampallil et al. (2013)

EE: semiconductor devices

 Darling (1989), Ciucci et al. (2011), Dessai et al. (2011), Csontos et al. (2005), Landheer et al. (2007), Mitchell et al. (2000), Rahmat (1996)

Nonlinear PB --- sinh(\$)

➢ Biology: solvated biomolecules ← Linear PB --- ♦

- Protein-Protein Interaction: Dong et al. (2003), Huang et al. (2003)
- Chromatin packing: Beard et al. (2001)
- Pka: Nielsen et al. (2001)
- Membrane: Callenberg et al. (2012)
- Binding Energy: Garcá-García et al. (2003)
- Solvation Free Energy: Simonson et al. (2002), Wagoner et al. (2006)
- Ion Channel Profiling: Unwin (2003)

Existing Finite Difference Based PB Solvers

➢ Examples

- APBS (Baker-Holst, 2000)
- DelPhi (Klapper-Hagstrom-Fine-Sharp-Honig, 1986)
- PBEQ (Im-Beglov-Roux, 1998)
- PBSA (Luo-David-Gilson, 2002)
- UHBD (Davis-Madura-Luty-McCammon, 1991)

Advantages

- Convenient to implement
- Robust
- User Friendly Interface

Disadvantages

- Large memory requirement for 3D grid
- Infinite domain is truncated
- Approximate treatment of interface
- Atomic charges are interpolated onto grid

Matched Interface & Boundary Method

➢Literature

- Maxwell Equation: Zhao & Wei (2004)
- Interface jumps conditions, Zhou, Feig & Wei (2006)
- Complex geometry, Yu, <u>Geng</u>, & Wei (2007);
- Charge singularities, Geng, Yu & Wei (2007), Geng & Zhao (2017)
- Force calculation and molecular dynamics, Geng & Wei (2011)
- Poisson-Nernst-Planck equation, Zheng & Wei (2011)
- Kohn-Sham equation, Chen & Wei (2011)
- Navier-Stokes equation, Zhou, Liu & Harry (2013)
- Finite Element MIB, Xia & Wei (2014)

➢Key Ideas

- Repeatedly use interface jump conditions
- Local high order interpolation for geometric singularities
- Green's function based charge regularization

<u>Fictitious values</u> at the red/yellow pair are linear combination of the regular values at the 10 grid points (green/red/yellow) and the interface jump conditions.

[Zhou, Feig & Wei, J Comput. Chem. (2006)]

Complex Geometry

<u>Fictitious values</u> are linear combination of the regular values at <u>even more</u> points and the interface jump conditions.

[Yu, Geng & Wei, J. Phys. Chem. (2007)]

Regulation I: Three Components Decomposition

$$\begin{aligned} & \int_{i=1}^{-\nabla \cdot (\varepsilon(\mathbf{r})\nabla\phi(\mathbf{r})) + \bar{\kappa}^{2}(\mathbf{r})\phi(\mathbf{r}) = \sum_{i=1}^{N_{m}} q_{i}\delta(\mathbf{r} - \mathbf{r}_{i}) \\ & \phi_{1}(\mathbf{r}) = \phi_{2}(\mathbf{r}), \quad \varepsilon_{1}\frac{\partial\phi_{1}(\mathbf{r})}{\partial\nu} = \varepsilon_{2}\frac{\partial\phi_{2}(\mathbf{r})}{\partial\nu} \quad \text{on } \Gamma \\ & \phi = \phi^{*} + \phi^{0} + \tilde{\phi} \\ & \phi^{*}(\mathbf{r}) = \sum_{i=1}^{N_{m}} \frac{z_{i}}{4\pi\varepsilon_{1}(\mathbf{r} - \mathbf{r}_{i})} \quad \text{in } \Omega_{1} \qquad \Delta\phi^{0} = 0 \quad \text{in } \Omega_{1} \\ & \phi^{0} = -\phi^{*} \quad \text{on } \Gamma \\ & \int_{i=1}^{-\nabla \cdot (\varepsilon(\mathbf{r})\nabla\tilde{\phi}(\mathbf{r})) + \bar{\kappa}^{2}\tilde{\phi}(\mathbf{r}) = 0 \\ & [\tilde{\phi}]_{\Gamma} = 0 \text{ and } [\varepsilon\tilde{\phi}_{\nu}]_{\Gamma} = \varepsilon_{1}\nabla(\phi^{*} + \phi^{0}) \cdot \nu|_{\Gamma} \\ & \text{[Geng, Yu & Wei, J. Phys. Chem. (2007)]} \end{aligned}$$

Potential mapping and convergence testing on 451C

[Geng, Yu & Wei, J. Phys. Chem. (2007)]

[Geng & Zhao, J. Comput. Phys. (2017)]

Accuracy Tests of rMIB

	Poisson Equation							PB Equation					
	MIB			rMIB			MIB			rMIB			
h	e_{ϕ}	ord.	$E_{\rm sol}$	e_{ϕ}	ord.	$E_{\rm sol}$	e_{ϕ}	ord.	$E_{\rm sol}$	e_{ϕ}	ord.	$E_{\rm sol}$	
1	3.9e-2		-3175.6	3.1e-2		-3181.4	3.8e-2		-3202.5	3.0e-2		-3209.0	
1/2	1.1e-2	1.9	-3136.2	8.2e-3	1.9	-3137.7	1.1e-2	1.8	-3161.8	8.5e-3	1.8	-3163.3	
1/4	1.6e-3	2.8	-3121.8	1.1e-3	2.9	-3122.1	1.7e-3	2.7	-3147.5	1.2e-3	2.9	-3147.8	
1/8	4.6e-4	1.8	-3123.7	3.3e-4	1.7	-3123.7	4.8e-4	1.8	-3149.5	3.5e-4	1.7	-3149.5	
1/16	9.0e-5	2.3	-3124.2	9.4e-5	1.8	-3124.2	9.8e-5	2.3	-3150.0	8.6e-5	2.0	-3150.0	

Solving PB equation and Poisson equations on a spherical cavity with six off-centered charges: spherical radius r=2, $\epsilon \downarrow 1 = 1$, $\epsilon \downarrow 2 = 80$, $\kappa=1$ for PB and $\kappa=0$ for Poisson.

[Geng & Zhao, J. Comput. Phys. (2017)]

		ϵ_1	= 4		$\epsilon_1 = 8$				$\epsilon_1 = 20$			
h	1.0	0.5	0.25	0.125	1.0	0.5	0.25	0.125	1.0	0.5	0.25	0.125
4pti	-15.8	+1.9	+0.4	-5887.9	-5.6	+1.3	+0.3	-2933.9	-0.4	+0.8	+0.2	-1162.6
$\operatorname{err.}(\%)$	0.27	0.03	0.01	—	0.19	0.05	0.01	_	0.03	0.07	0.02	—
20vo	-13.9	+1.5	+0.3	-4326.3	-5.3	+1.0	+0.2	-2154.4	-0.7	+0.6	+0.1	852.4
$\operatorname{err.}(\%)$	0.32	0.03	0.01	—	0.25	0.05	0.01	—	0.08	0.06	0.01	—

Electrostatic free energies *E* \downarrow *sol* of proteins 4pti and 2ovo computed with rMIB solver: $\epsilon \downarrow 1 = 4,8, 20, \epsilon \downarrow 2 = 80$, ion concentration = 0.15M, MSMS density =10, values at h=1, 0.5, 0.25 show difference from values at h=0.125 in kcal/mol.

[Hu, Zhao & Geng, CiCP (2018)]

Solving PB equation on a set of 24 proteins

PB Equation Parameters: $\epsilon \downarrow 1 = 1, \epsilon \downarrow 2 = 80, \kappa = 1$

[Geng & Zhao, J. Comput. Phys. (2017)]

Molecular Dynamics is the ultimate goal

Potential $\phi(x, y, z) \rightarrow$ Force **F** on individual atoms

Not simply the q*E* term, *E* is not continuous across interface

Computing force is an interface problem.

[Geng & Wei, J. Comput. Phys. 2011]

Dielectric Boundary Force

$$\mathbf{F}^{\mathrm{DB}} = \int_{\mathbf{\Gamma}} f^{\mathrm{DB}} d\mathbf{S} = \int_{\mathbf{\Gamma}} \frac{1}{2} (\epsilon^{+} |\mathbf{E}^{+}|^{2}) - \epsilon^{-} |\mathbf{E}^{-}|^{2}) d\mathbf{S}$$

Challenge:

- Find $f^{\rm DB}$ from surface potentials and their gradient
- Numerical Surface Integral
- Distribution of the force to individual atoms

Reference:

Lu et al. (2007), Che et al. (2008), Zhou et al. (2008), Geng et al. (2011), Li et al. (2011), Li et al. (2013)

Gradient of Potential Computed Using MIB

Validation of Gradient (Normal Derivative)

Ν		III	М		MIB					
	<i>E↓</i> ∞ (u)	order	$E \downarrow \infty ($ $u \downarrow n \uparrow -)$	order	<i>E↓</i> ∞ (u)	order	$E \downarrow \infty ($ $u \downarrow n \uparrow -)$	order		
32	3.1e-3		1.6e-2							
64	7.0e-4	2.2	4.5e-3	1.8						
128	1.2e-4	2.6	1.1e-3	2.0						
256	2.8e-5	2.1	2.9e-4	1.9						
512	6.2e-6	2.2	7.3e-5	2.0						

$$u(\mathbf{x}) = \begin{cases} \sin(x+y) & \text{in } \Omega^-, \\ \log(x^2+y^2) & \text{in } \Omega^+, \end{cases} \qquad \beta(\mathbf{x}) = \begin{cases} \sin(x+y)+2 & \text{in } \Omega^-, \\ \cos(x+y)+2 & \text{in } \Omega^+, \end{cases}$$

Interface: circle with radius $\frac{1}{2}$ centered at (0,0)

IIM Data: [Li et al., SIAM Numer. Analy., 2017]

Validation: two-atom system

Two spherical atoms with radius 2.0 Å and centered charge 1.0e, one is fixed at (-3,0,0), the other moves from (-3,0,0) to (4,0,0)

[Geng & Wei, J. Comput. Phys. 2011]

Validation: Protein 1ajj

Protein 1ajj with 519 atoms; one nitrogen atom is moved from -0.25 to 0.25 from its original location.

[Geng & Wei, J. Comput. Phys. 2011]

Fields and Forces Computed Using rMIB

Summary of Future Work

- Summary
 - 2nd order MIB returns 2nd order Gradient?
 - MIB force for PB equation is qualitatively verified
- Future work
 - rMIB implementation
 - Improve the speed (mesh generator, linear algebraic solver, assignment of boundary condition)
 - Improve the robustness
 - Molecular simulation on larger proteins

Thank you