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Chronic Lymphocytic Leukemia (CLL)

most common type of leukemia
accumulation of small B lymphocytes with mature appearance
most patients are diagnosed without symptoms during routine blood tests

Upon diagnosis, a “wait and see” approach is followed.
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Risk factors and heterogeneity
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Risk factors and heterogeneity

del 13q: Deletion of long arm of chromosome 13, is the most common
abnormality (50%). Best prognosis, some never need treatment

Trisomy 12: 20-25% of patients, have intermediate prognosis

Deletion of long arm of chromosome 11, relatively poor prognosis, because
deletion targets the ATM gene. Occurs in 5-10% of cases

del 17p: deletion of part of short arm of chromosome 17. Poorest prognosis because
it inactivates p53. (5-10% of cases)



Therapy

up to 2014, the standard was “chemo-immunotherapy”
ineffective against more virulent cases, e.g. del 17p or
unmutated CLL

Targeted treatment approaches have emerged.



lbrutinib

First Bruton tyrosine kinase (BTK) inhibitor

acts via specific binding to a cysteine
residue in the BTK kinase domain

inhibits BTK phosphorylation and its enzymatic
activity

Clinically active through:
induction of cell death
inhibition of proliferation
inhibition of tissue homing
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CLL response to Ibrutinib in previously treated patients
( treatment start at day 0)
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Every patient shows a temporary phase of lymphocytosis, where the number of
CLL cells in blood increases up to a peak, before eventually declining.



Reasons for lymphocytosis: Compartments
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Reasons for lymphocytosis: Compartments

lbrutinib
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2 possible scenarios for
how ibrutinib affects cells in those
compartments



Scenario 1: death “by neglect” in blood

lbrutinib

no cell death in tissue cells die in blood after
redistribution, due to lack
of microenvironment



Scenario 1: significant cell death in tissue

significant cell death
In tissue
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Kinetics of chronic lymphocytic leukemia (CLL) cells in tissues and blood
during therapy with the BTK inhibitor ibrutinib
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Wierda, Hagop Kantarjian, Danelle James, Susan O'Brien and Jan A. Burger

What does this lymphocytosis mean?

— T~

- Drug simply causes cells to
Drug causes significant cell death in tissue

shift compartment
_ This lead to “death by neglect” Only a minority of tumor redistributes to blood

in blood

=> Less effective drug =>More effective drug

To answer question:

apply mathematical models to
clinical data in order to
measure kinetic parameters




Mathematical model

We considered a two-compartment model for CLL dynamics:
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Mathematical model

m = rate of redistribution

d,= CLL cell death rate in tissue

d, = CLL cell death rate in blood

c = factor to account for the
observation that CLL cells
stabilize at low levels in the

long term

nodal response rate: a=m+d,

idea: fit model to treatment
data and estimate the
parameters

dx
—=—mx—d,(x—c
dt (¥ =6)
dy

—=mx—-d

dt 2

Treatment:

Tissue

deathi death l’



Model

Aims:

* estimate crucial parameters

* calculate the percentage of pre-treatment tissue tumor burden
that redistributes into the blood



Model

Relative number of cells redistributed from tissue to blood:
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Model fitting

Model contains 2 variables:

dx
dt
dy

cells in blood => absolute lymphocyte counts — = mMX — d3 y

dt

cells in tissues

=—mx—d,(x—c)




Model fitting

Model contains 2 variables:

dx
dt
dy

cells in blood => absolute lymphocyte counts — =MmMX — d3 y

dt

cells in tissues

=—mx—d,(x—c)




Volumetric Analysis of tissue tumor burden

Volumetric analyses of CLL lymph node and
spleen manifestation (A) before and (B) during
therapy with ibrutinib.

Depicted are CT images from a representative
CLL patient from our series with superimposed
reconstruction of main areas of CLL
involvement, highlighted in color. The volumes
of the axillary (red), intra-abdominal (blue),
inguinal (purple) and spleen (green, yellow)
disease manifestations are displayed next to

each involved area.
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Volumetric analysis done for 3 time points: one before treatment, two during treatment

(bone marrow burden difficult to measure => parameter estimates are lower bounds )



Model fitting

Model contains 2 variables:

dx
dt
dy

cells in blood => absolute lymphocyte counts — =MmMX — d3 y

dt

cells in tissues

=—mx—d,(x—c)




total lymphocyte count in blood (x109)
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Parameter Estimates

i i oy i i o e
d, = death rate of CLL cells in blood;

0 002 0.027 0.0096 0.037 3034

d, = death rate of CLL cells in tissue;
0.022 0.015 0.0177 0.033 3064 58 50

m = rate of redistribution of tissue cells to blood;
0.014 0.012 0.0146 0.026 7044 674 52.6

0016 0.047 00009 0.047 30209 120 19 o = overall nodal decline rate, i.e. rate at which cells disappear
from the tissue due to redistribution + death, i.e. ao=m+d,;.

0.018 0.022 0.0095 0.032 2143 217 29.4 X, = total body number of CLL cells in tissue;

0.014 0.027 0.0061 0.033 4083 73 18.2 Yy, = total body number of CLL cells in blood;

O Ll Lo L e HE % redistr = % of pre-treatment tissue tumor burden that is

redistributed.
0.011 0.032 0.0023 0.034 15452 521 6.9

0.047 0.033 0.0088 0.042 6156 358 19.3

[

0.018 0.035 0.0034 0.039 7711 38 8.8

average 0.017 0.027 0.008 0.035 8019 221 23.3

0.011 0.010 0.005 0.006 8799 226 17.0




Death rates

In tissue: d,= 0.027 + 0.01 days™

2.7% + 0.99% of the cells die per day in tissue

In blood: d,=0.017 + 0.012 days™

1.7% £ 1.1% of the cells die per day in the blood

Important message: Higher death rate in tissue than in blood




Compare to death rate in absence of treatment

In tissue: d,= 0.027 + 0.01 days™

2.7% + 0.99% of the cells die per day in tissue

In blood: d,=0.017 + 0.012 days™

1.7% £ 1.1% of the cells die per day in the blood

Previous estimate in the absence of treatment:

0.5% of cells died per day

treatment increases
death rate 5-fold

treatment increases
death rate 3-fold



Death rates vs redistribution rate

In tissue: d,= 0.027 + 0.01 days™

2.7% + 0.99% of the cells die per day in tissue

In blood: d,=0.017 + 0.012 days™

1.7% £ 1.1% of the cells die per day in the blood

Redistribution rate: m = 0.008 £ 0.005 days™

Important message: Redistribution rate significantly smaller than death rates
i.e. redistribution not main effect of drug




Death rates vs redistribution rate

In tissue: d,= 0.027 + 0.01 days™

2.7% + 0.99% of the cells die per day in tissue

In blood: d,=0.017 + 0.012 days™

1.7% £ 1.1% of the cells die per day in the blood

Redistribution rate: m = 0.008 £ 0.005 days™

The percentage of the tissue CLL cell population that was re-distributed
into the blood was 23.3 £ 17%. - relatively small fraction



Conclusion #1

 |brutinib kills cells in tissues at significant rate

* Not just death by neglect



Heterogeneity in treatment responses
=> correlation with genetic risk factors?

del 13q: good response with chemo-immunotherapy
Trisomy 12: intermediate response with chemo-immunotherapy
intermediate response with chemo-immunotherapy

del 17p:  ineffective response with chemo-immunotherapy



Heterogeneity in treatment responses
=> correlation with genetic risk factors?

del 13q: good response with chemo-immunotherapy
Trisomy 12: intermediate response with chemo-immunotherapy
intermediate response with chemo-immunotherapy

del 17p:  ineffective response with chemo-immunotherapy

Mutated CLL: good response

Unmutated CLL: bad response



Heterogeneity in treatment responses
=> correlation with genetic risk factors?

Patient cohort discussed so far received previous
chemo-immuno therapy

Repeat analysis with a treatment-naive patient cohort

Compare unmutated CLL (U-CLL, more virulent type) and
mutated CLL (M-CLL, less virulent type).

CLINICAL MEDICINE

Leukemia cell proliferation and death in
chronic lymphocytic leukemia patients on
therapy with the BTK inhibitor ibrutinib

Jan A. Burger,’ Kelvin W. Li,2 Michael J. Keating,' Mariela Sivina,' Ahmed M. Amer,® Naveen Garg,’
Alessandra Ferrajoli, Xuelin Huang,* Hagop Kantarjian," William G. Wierda,' Susan 0'Brien,’
Marc K. Hellerstein,® Scott M. Turner,? Claire L. Emson,? Shih-Shih Chen,® Xiao-Jie Yan,®

Dominik Wodarz,” and Nicholas Chiorazzi®



Scaled ALC

blood lymphocyte dynamics during therapy in U-CLL and M-CLL

average dynamics of whole cohort
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Estimated tissue death rates

B Mm-cLL
100 —

average tissue cell death rate:
“ A 12.0619.42%
9 estimate cell life spans found
v ‘ in previous study
2 ® U-CLL
52 -
c8 10~ average tissue cell death rate:
2 + 2
b l 28.88+11.33%
E o
<>: statistically significant

difference, p=0.0017

Some patients have tissue cell death rates consistent with previous cohort (10-50 days life-span)

In other patients tissue cells die much faster (1-10 days life span)

Significantly faster tissue cell death rates are observed in patients with higher risk factors (U-CLL)



Simulated average tissue dynamics in U-CLL and M-CLL
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Conclusion #2

More virulent U-CLL responds faster than less
virulent M-CLL

Need to re-evaluate meaning of traditional risk
factors in context of new targeted treatments



Another important outcome of these
studies:

For individual patients, we can measure kinetic parameters
that characterize the response to ibrutinib.

total tumor size at the start of treatment
tissue and blood cell death rates during treatment
redistribution rate of cells from tissue to blood

Patient-specific parameters can be plugged into mathematical
models to make individualized predictions about treatment outcome

=> Towards using evolutionary theory for personalized medicine

=> Explore this in the context of resistance evolution



We can also measure patient-specific
parameters before treatment

exponential growth:

dx/dt =rx-dx
log
ALC:|
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e dynamics of label uptake and
dilution allows you to estimate
the division rate of cells, r.

This study used deuterium, a nonradioactive isotope detect-
able by mass spectrometry, that was administered in the form
of deuterated “heavy” water (?H,0O), to label newly synthesized
DNA of dividing cells in vivo (26). The kinetic profiles identi-

* knowing the overall growth
rate and the division rate of cells
allows us to estimate the death
rate of cells from exponential
growth rate, d.
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Evolutionary Dynamics of Resistance
against ibrutinib

Evolution of ibrutinib resistance in chronic lymphocytic
leukemia (CLL)

Natalia L. Komarova®® 1, Jan A. Burger<, and Dominik Wodarz®®

*Department of Mathematics and ®Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697; and “Department of Leukemia,
MD Anderson Cancer Center, Houston, TX 77230
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Resistance mechanisms

Furman et al 2014
Chronic Active BCR signaling

Woyach et al 2014
Sharma et al 2016
Antigen

IKK

kB
kinase
\4 Y * *
MAP kinase NF-AT AKT /mTOR NF-xB
activation activation activation activation
Figure 1. B Cell Receptor Signaling in Malignant B Cells

Chronic active BCR signaling is shown. Ibrutinib is shown to inhibit BTK
mutations in CLL patients.

. Red asterisks denote signaling effectors that are the target of ibrutinib resistance



Resistance mechanisms

Chronic Active BCR signaling Furman et aI 2014
Woyach et al 2014
Boell W ni Sharma et al 2016
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MAP kinase NF-AT AKT /mTOR NF-xB
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Figure 1. B Cell Receptor Signaling in Malignant B Cells
Chronic active BCR signaling is shown. Ibrutinib is shown to inhibit BTK. Red asterisks denote signaling effectors that are the target of ibrutinib resistance

mutations in CLL patients.
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Resistant mutants likely neutral, perhaps slightly advantageous



Construct and parameterize evolutionary mathematical model
and ask the following questions:

1. Can we predict time of resistance-induced disease relapse?

2. If predicted relapse time is short, can we suggest approaches to prolong it?



Mathematical model — stochastic birth death
process

cancer cell




Mathematical model

Probability
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Mathematical model
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Mathematical model — growth phase

resistant

Probablllty f
ce

Probablllty ‘

Probablllty

L > D,

I.e. division rate > death rate

-> Clonal Expansion



Mathematical model — treatment phase

Probability resistant
u cell

Probability

L< D,

I.e. division rate < death rate

-> Exponential Decline



Principles of model

(1) with resistance

pre-treatment treatment

time




Parameters values for individual patients

Problem: we have a limited number of patients in our cohort




Solution: Virtual patients

A population of 1000 artificial “patients” is simulated with parameters randomly
drawn from the clinically available bounds



First Important Question

What are the chances that resistant mutants
are already present at the time when treatment
Is started?

pre-treatment

treatment




Answer: Resistant mutants are almost certainly
present before the start of therapy

Probability of having a mutantin a
colony at detection

Number of CLL cells in tissue is
1012-10%3

Mutation rate is 10°-108

Drug resistant cells are almost
certain to exist before

detection




Clinical confirmation of theory

ARTICLE
Received 16 Sep 2015 | Accepted 12 Apr 2016 | Published 20 May 2016 OPEN

Clonal evolution in patients with chronic lymphocytic
leukaemia developing resistance to BTK inhibition

8,9,10,»

Jan A. Burger1'*, Dan A. Landau?34>*, Amaro Taylor-Weinerz", lvana Bozic®’*, Huidan Zhang
Kristopher Sarosiek”, Lili Wang", Chip Stewart?, Jean Fan'?, Julia Hoellenriegeﬂ, Mariela Sivina',

Adrian M. Dubuc'3, Cameron Fraser', Yulong Han'4, Shuqgiang L', Kenneth J. Livak', Lihua Zou?,

Youzhong Wan'!, Sergej Konoplev“’, Carrie Sougnezz, Jennifer R. Brown", Lynne V. Abruzzo'®, Scott L. Carter?,
Michael J. Keating!, Matthew S. Davids"l, William G. Wierda', Kristian Cibulskis?, Thorsten Zenz, Lillian Werner'8,
Paola Dal Cin'3, Peter Kharchencko'?, Donna Neuberg18, Hagop Kantarjian1, Eric Lander?, Stacey Gabriel?,

Susan O'Brien!, Anthony Letai'l, David A. Weitz8, Martin A. Nowak®’, Gad Getz2 & Catherine J. Wu2119

Resistance to the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib has been attributed solely
to mutations in BTK and related pathway molecules. Using whole-exome and deep-targeted
sequencing, we dissect evolution of ibrutinib resistance in serial samples from five chronic
lymphocytic leukaemia patients. In two patients, we detect BTK-C481S mutation or multiple
PLCG2 mutations. The other three patients exhibit an expansion of clones harbouring del(8p)
with additional driver mutations (EP300, MLL2 and EIF2A), with one patient developing trans-
differentiation into CD19-negative histiocytic sarcoma. Using droplet-microfluidic technology
and growth kinetic analyses, we demonstrate the presence of ibrutinib-resistant subclones
and estimate subclone size before treatment initiation. Haploinsufficiency of TRAIL-R, a
consequence of del(8p), results in TRAIL insensitivity, which may contribute to ibrutinib
resistance. These findings demonstrate that the ibrutinib therapy favours selection and
expansion of rare subclones already present before ibrutinib treatment, and provide insight
into the heterogeneity of genetic changes associated with ibrutinib resistance.



Next Question

Given that mutants pre-exist at start of therapy,
can we predict how long it takes for them to grow
sufficiently to cause relapse?

 Predict the average number of mutants at treatment start.

* Predict how long it takes them to reach detectable levels.



H# resistant
mutants

Growth dynamics of resistant mutants:
Heterogeneity of (virtual) patient populations

1012 F————+7

—

e
—
(=)

Each line shows the average growth trajectory
for a given parameter combination (i.e. for an
individual virtual patient)

—
S
o0

—_
[«
=)}

104 I I I I I I I I I I I I

Treatment duration, yrs

 Although resistance is predicted to be present with certainty, its dynamics are
very different for different patients

* The only variables are CLL growth rates and population size at detection



Do average growth trajectories
provide meaningful information?

* For a particular patient (a particular parameter combination), growth of CLL
cells is a stochastic process.

* How wide are the variations within one parameter set?

* Can we use mean numbers as guidance?



Do mean numbers provide meaningful
information?

(a) Number of mutants present at start of treatment: large variation
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Do mean numbers provide meaningful
information?

(b) Time until resistance is detected: small variation
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Do mean numbers provide meaningful
information?

For a particular patient, if the parameters
are known, we can reliably predict the
time until disease relapse
(from a mathematical standpoint).



Predictions about time of disease relapse

Standard Ibrutinib therapy

020
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T
Resistance 46% Bl
o
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. o. ().OST
Resistance 75% g |
before 10 years & oml
0 5
No resistance 5% Years of treatment
after 30 years

Mean time to resistance generation is 9 years if resistant mutants are neutral

or 5 years if they are slightly advantageous



Personalized prediction

measure kinetic parameters in individual patient

predict how long ibrutinib monotherapy can maintain control

Short time, e.g. 1 year

=> inbrutinib monotherapy is
insufficient

=> other approaches needed.

Long time, e.g. > 10 years
=> therapy ok



Personalized prediction

measure kinetic parameters in individual patient

predict how long ibrutinib monotherapy can maintain control

Short time, e.g. 1 year

=> inbrutinib monotherapy is
\ insufficient
\“~\=> other approaches needeql/.,f"'

Long time, e.g. > 10 years
=> therapy ok



Personalized improvement of therapy

Can we use the model to identify treatment approaches
to prolong ibrutinib-mediated control of the disease?



Possible strategies to overcome resistance

 Early treatment (treat upon diagnosis, not watch & wait)
* Combining 2 tyrosine kinase inhibitors (toxicity might be problematic)

* “Debulking” = first use chemo-immunotherapy, followed by
ibrutinib



Possible strategies to overcome resistance

* “Debulking” = first use chemo-immunotherapy, followed by
ibrutinib

Can resistance be prevented by any of these approaches?
=> according to calculations, resistance cannot be prevented




Debulking before ibrutinib: while it is not likely to prevent
occurrence of resistant mutants, can it delay relapse?




Predictions

Standard Ibrutinib therapy Debulking” by a factor of 1/100

Ol4l""l""l""I""l""l""_'-

Resi 6% ' 55% less than 10 yrs
esistance ° 0.10F 14% more than 30 yrs
before 2 years
. 0.08 -
Resistance 46%
before 5 years 0.06
Resistance 75% 004F [
before 10 years [
0.02 -
No resistance 5% 000:_
aﬁer?’oyears . OI "5""10""15""20""25""30'

Time to resistance, yrs

Debulking prior to ibrutinib can significantly delay the timing of relapse



Conclusions

* Used math + clinical data to estimate patient-specific parameters

e Calculated that ibrutinib causes significant amounts of cell death in tissue,
rather than just causing redistribution of tumor cells from tissue to blood

* Determined that risk factors that distinguished responsive / non-responsive patients
in chemotherapy treatment might have to be re-evaluated in the context of ibrutinib

* Developed an evolutionary theory framework to make patient-specific prediction about
therapy outcomes, and to compute treatment strategies to improve outcome

=> Test model predictions against clinical data
=> Explore mathematically in more detail how treatment can be improved further
=> Design clinical trial that is based on the mathematical and evolutionary foundations.



Spatial dynamics of virus spread —
oncolytic viruses

Virus spreads

o Tumeor cell Virus Tumor cell
replicates  ultimately ruptures
Oncolytic (cell lysis)
virus

L. 0 0 —

Healthy cell Virus dose not Healthy cell
replicate undamaged

Complex Dynamics of Virus Spread from Low Infection
Multiplicities: Implications for the Spread of Oncolytic Viruses

Ignacio A. Rodriguez-Brenes, Andrew Hofacre, Hung Fan, Dominik Wodarz 2017

Complex Spatial Dynamics of Oncolytic Viruses In Vitro:
Mathematical and Experimental Approaches

Dominik Wodarz [&], Andrew Hofacre, John W. Lau, Zhiying Sun, Hung Fan, Natalia L. Komarova 2012

Early infection and spread of a conditionally replicating
adenovirus under conditions of plaque formation

Andrew Hofacre 2, Dominik Wodarz ?, Natalia L. Komarova ¢, Hung Fan @ & & 2012



Experimental system: Adenovirus AAEGFPuci growing on 293 cells

* Virus related to well-established oncolytic vitus ONYX-015

* Virus is labeled with green fluorescent protein so we can not only track numbers
of infected cells, but also spatial patterns.

* Cells are spatially arranged such that a source cell is most likely to transmit virus
to directly neighboring target cells (2D).

Andy Hofacre and Hung Fan (UCI)



Experimental system: Adenovirus AAEGFPuci growing on 293 cells

* Virus related to well-established oncolytic vitus ONYX-015

* Virus is labeled with green fluorescent protein so we can not only track numbers
of infected cells, but also spatial patterns.

* Cells are spatially arranged such that a source cell is most likely to transmit virus
to directly neighboring target cells (2D).




Experimental system: Adenovirus AAEGFPuci growing on 293 cells

* Virus related to well-established oncolytic vitus ONYX-015

* Virus is labeled with green fluorescent protein so we can not only track numbers
of infected cells, but also spatial patterns.

* Cells are spatially arranged such that a source cell is most likely to transmit virus
to directly neighboring target cells (2D).




Experiments: follow individual infection foci
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Longer-term growth patterns

2 types of growth patterns observed

Traditional plaque or “ring” or “robust growth

“diffuse growth pattern” or “limited growth”



Robust growth / Ring structure

Limited / Diffusive growth

Wodarz et al 2012, PLoS Computational Biology



How can such growth patterns be
explained?

=> We turn to a stochastic, agent-based computational model



Agent-based model
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Figure 2: Diagram explaining the cellular automaton. Gray=uninfected
cell, Black=infected cell. During cell division, one of the daughters
occupies one of the nearest neighboring slots. If a slot is already
occupied, the a daughter cell cannot move there. If all neighboring
slots are occupied, no division occurs. An infected cell can pass on the
virus to uninfected cells which are located in the nearest neighboring
slots. The virus cannot be passed on to a slot which is not occupied. For

further details, see text.



Model / Data

faster viral replication rate, longer life-span of infected cells




Model / Data

slower viral replication rate, shorter life-span of infected cells




Further complexities



According to the model, the different spatial patterns can be
brought about differences in parameters

But experiments indicate, the the situation is more complex

Different patterns are observed
in same culture, i.e. same
virus-cell combinations, and
identical experimental
conditions.

about 50% ring structure
50% disperse pattern




Why?



Exploring possible mechanisms:

1. Race between virus and antiviral factors (interferon)

O Virus

® interferon

Q Susceptible cell
‘ Cell in antiviral state

With AdJEGFPuci infection of 293 cells, data indicate that a limited anti-viral state is
induced in cells.

Rodriguez-Brenes et al 2017, PLoS Computational Biology



Experimental test: Inhibiting interferon
increases % robust growth

TABLE 1

EFFECT OF VALPROIC ACID ON VIRAL SPREAD'

Spreading Infections

VPA (mM) Limited Robust
0 131 120
10 30 54
15 16 30

1Ad-293 cells were infected with AJEGFPuci under conditions of plaque formation, in the presence of

different concentrations of valproic acid. At 14 days post-infection the numbers of spreading infections
with limited and robust patterns were scored by fluorescent microscopy. The experiment was repeated at

least three times with similar results.



Inhibiting interferon: increases % robust
TABLE 2

EFFECTS OF ANTI - IFNAR2 AND RAPAMYCIN ON VIRAL SPREAD'

Treatment Spreading Infections
Limited Robust % Robust

None 74 68 48
5 5 50
Anti — IFNAR2 26 105 80
5 17 77
Rapamycin 93 379 80
15 48 76

1Ad-293 cells were infected with AAEGFPuci under conditions of plague formation, in the presence of
anti-IFNAR2 mAb (1 pg/ml) or rapamycin (5 ng/ml). The infections were carried out with two different
infections with limited and robust patterns were scored by fluorescent microscopy. Results for the lower
virus inocula are shown below the results for the higher inocula. The experiment was repeated a second

time with similar results.



Inhibition of interferon increases the percentage of robust infections.

Hypothesis:

* Initial race between virus spread and the spread of antiviral state explains
occurrence of limited and robust spread in same dish

» Stochastic effects determine whether the antiviral response wins (limited spread)
or whether the virus wins (robust spread)



Inhibition of interferon increases the percentage of robust infections.

Hypothesis:

* Initial race between virus spread and the spread of antiviral state explains
occurrence of limited and robust spread in same dish

» Stochastic effects determine whether the antiviral response wins (limited spread)
or whether the virus wins (robust spread)

=> Test this hypothesis with mathematical models




Start: Non-spatial model for analytical tractability (ODEs)

Move to: Spatial “metapopulation models, based on the ODEs

Finally: Spatial, agent-based model that tracks individual cells



What model properties are needed to see different
outcomes under identical conditions?

| many models, for a given set of parameters, the system always converges to the same
outcome, no matter what the initial population sizes are:

N

amount of virus

time



Need bistability and dependence on initial conditions in
model to explain data

2 curves with same parameters
but different initial virus populations
sizes.

separatrix

amount of virus

time



amount of virus

Effect of stochasticity

2 curves with same parameters
and same initial virus populations
sizes.

separatrix

time



An ODE model with cells in an antiviral state

x1: susceptible cells y1: infected cells

X0: cells in antiviral state

[ T1+To+
T = TI (1 — =52 yl) — dz1 + gxo — BT1y1 — YTy
{ 20 = yZ1Y1 — gxo — dxo
L1 = Briyr —ayr °
infection ‘ "
> ‘ ‘
suscepI‘bIe cell
infection
>
cell in anti-viral no virus production
state due to anti-viral

state



An ODE model with cells in an antiviral state

x1: susceptible cells y1: infected cells

X0: cells in antiviral state

(i1 = rm (1 — x1+‘§§+y1) — dz1 + gxo — fr1yr — Yx1y
\ 0 = ~z1Yy1 — g0 — dxo
. %1 = Briyr —ay .
infection ‘ “
O =@
susceptible cell no particularly interesting dynamics
I observed. No bistability.

infection .
> => race between spread of virus
and anti-viral state alone
cannot explain our data!!!

cell in anti-viral no virus production
state due to anti-viral We can reject this hypothesis

state



Despite experimental indications, race between
virus spread and the spread of an IFN-induced
antiviral state cannot explain the data.

Need additional components



So let’s add some more complexity
* Multiple infection and increased replication kinetics
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Additional assumption: Increased replication kinetics in
multiply infected cells can saturate the antiviral state

G virus ® Antiviral factors

Multiple infection / fast replication kinetics Single infection / slow replication kinetics
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Add multiple infection, and assume that multiple
infection can overcome anti-viral state

j;l = rr (]_ — w1+w0;y1+y0) — dil?l + gxo — Bxlyl — YT1Y1
To = YT1Yy1 — 9To — Broy1r — dxg

71 = B(r1+yo)y1 — ays

Yo = Bxoyr —ayo — LYoy

¢
L IS

infection infection ‘
> —

i _vi no virus production P -
cell in anti-viral et pﬁ o multiple infection overcomes
ue to anti-vira L :
state - anti-viral state, leading to
state

productive infection



Add multiple infection, and assume that multiple
infection can overcome anti-viral state

1 = rxy l_wl-l-ivo-!-yl-i-yo —d£l31-|- o — BT1YL — YL1Y1
K g Y YL1Y
To = YT1y1 — gro — Broy1 — dxg
1 = B(x1+yo)y1 —ay
%0 = PBzoy1 — ayo — BYoy1 ‘ :‘
infection infection ‘
> —
cell in anti-viral no virus production multiple infection overcomes
state dtui to anti-viral anti-viral state, leading to
state

productive infection

=> Now, model properties depend on initial conditions!!!



Number of cells
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Bistability, and extensions to stochastic dynamics

deterministic differential equations;
same parameters
different initial conditions

1

— Unifected
- - ~ Infected

0
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stochastic Gillespie simulations of
differential equations;

same parameters

same initial conditions

1 A ™

Unifected
~ Infected

=> g start to explaining how such different dynamic can be observed under indentical

conditions, in the same dish



Inhibiting interferon in the model
increases fraction of robust infections
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Simplest spatial model
metapopulations

migration of populations to
nearest neighboring patches

NN

mass-
action

mass- mass- mass- mass-

action
dynamics

action action action

dynamics dynamics dynamics dynamics




Number of cells

Simulations of metapopulation model
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Inhibiting interferon
increases fraction of robust infections
in metapopulation model as well
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Finally back to agent-based model
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Model Conclusions

These models tell us that a combination of

(i) Interferon-based anti-viral state induction
(ii) saturation of anti-viral state due to multiple infection

can explain our experimental data

 Mathematical models enabled us to reject experimentally supported
hypothesis that IFN-induced anti-viral state alone can explain the data

 The models further enables us to propose an additional mechanism that
can contribute to explaining the data

* Further experiments needed for testing => new collaboration with ASU on
myxoma virus in a similar setting and beyond
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