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The Polynomial Atlas Method



One Dimension: Periodic Model Problem
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Four-Chart Circle Atlas
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Four-Chart Circle Atlas: Poutine
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Act Locally

Green is 
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Change of Domain
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A case where polynomials really are bad
Discretizing       : don’t oversample near endpoints
Instead, make FFT work with nonperiodic data:
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A case where polynomials really are bad
Discretizing       : don’t oversample near endpoints
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A case where polynomials really are bad
The fourth derivative is discontinuous at the endpoints.
This is still not a spectral interpolation scheme.
Suggestions welcome.  Idea: discretize         instead of     ? f f

⇡0



Results for the model problem on a circle 
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Three dimensional problems 



Three dimensions



Geometry is continuous (no mesh)



Atlas haiku
This     is a bi-
variate polynomi-
al of rank thirty
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as in Townsend & Trefethen, An extension of 
Chebfun to two dimensions, SIAM JSC 2013



Interior regular grid interpolation

An      discretized 
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Specialized quadratures for      singularities1
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Single layer integrand



Thank you!

Future work: boundary integral methods
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IV. SINGLE-LAYER POTENTIALS

A. When the evaluation point is exterior

Let x be exterior to the body surface D. Then the single-layer potential with force density f is given by

u

i

(x) =
1

8⇡

Z

D

G

i j

(x,y) f

j

(y) dS y (12)

=

MX

m=1

1
8⇡

Z

`
m

([�1,1]2)
G

i j

(x,y) 
m

(`�1
m

(y)) f

m, j(`�1
m

(y)) dS y (13)

=
X

m

1
8⇡

Z

[�1,1]2
G

i j

(x, `
m

(s, t)) 
m

(s, t) f

m, j(s, t)J

m

(s, t) ds dt (14)

Here G

i j

is the Green’s function known as the Stokeslet for the appropriate domain. We use outer products
of increasingly fine Clenshaw-Curtis quadrature rules to evaluate the integrands, which are smooth, until a
desired tolerance is reached.
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Power & Miranda, SIAM JAM 1987
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2.2. Numerical method: the method of stresslet images
The fundamental singularities of Stokes flow may be used to derive a representation
formula for the fluid flow in terms of singular boundary integrals (see Power &
Miranda 1987 and Pozrikidis 1992). The presence of a nearby wall has been
incorporated into various forms of the boundary integral formulation, for instance
using regularized Stokeslets with their images (Ainley et al. 2008). A well-posed
double-layer form of the boundary integral formulation may be adapted for use near
an infinite wall using image singularities of the stresslet, as suggested by Spagnolie
& Lauga (2012). In this double-layer formulation with stresslet images, the fluid
velocity is given by (see Pozrikidis 1992)
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where n̂ is the unit normal vector pointing into the fluid, y is an integration variable
over the body surface, q(y) is an unknown density,
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is the stresslet singularity, a third-order tensor, and T ⇤(x, y
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and X̂ = x � y. The expression (2.11) is the result of applying the Lorentz reflection
(see Kim & Karrila 1991 or Kuiken 1996) to the original stresslet, with some
manipulation. The dimensionless force due to gravity acts at an angle � relative
to the wall, F = cos � x̂ � sin � ẑ (the wall is parallel to gravity when � = 0), and
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In the limit as the point x tends towards a point on the boundary, x 2 S, the no-slip

boundary condition on the body surface provides an integral equation to be solved
for q,
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The integrand is finite with a jump at the singular point, x = y. Further investigation
of the integral operator leads to relations between the velocities and the density q,
closing the system:
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where SA is the surface area of the particle, em is the mth Cartesian unit vector and
Am = R

S |(em ⇥ (x � x0))|2 dS (see Pozrikidis 1992).
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