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Poroelasticity theory

@ In poroelasticity theory, poroelastic medium saturated by a
viscous fluid is modeled as a mixture of solid and fluid phases

@ For small deformations and slow dynamics, the problem is a
linear PDE coupling linear elasticity and Darcy flow equations

u: Q) —R"™ : solid displacement, p:Q — R : pore pressure
2pe(u) + Adivul —apl: stress tensor
w,A 1 Lamé parameters , a >0 : Biot-Willis coefficient
Governing equations

—div(2ue(u) + Adivul —apl) = f,
sop+ adiva —div(kVp) =g,

with 59 > 0 : storage coefficient « : permeability
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Applications

Geomechanics
Reservoir modeling in petroleum engineering

Biological tissue modeling (bone, articular cartilage)

Recently, multiple-network poroelasticity models are used for
modeling of human brain
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Finite element methods for poroelasticity (review)

Formulations

e displacement — pressure (Murad et al. (1996), Riviere et al.
(2017), Chen et al. (2013))

o displacement — flux — pressure (Phillips, Wheeler (2008), Yi
(2013), Lee (2018), Zikatanov et al. (2016-) )

@ stress — displacement — flux — pressure (Starke et al.(2005), Yi
(2014), Lee (2016), Fu (2018))

e displacement — fluid content — pressure (Feng et al. (2016))

e displacement — total pressure — fluid pressure (Lee et al.
(2017), Ruiz-Baier et al. (2016))

Solver strategy
@ monolithic
@ iterative coupling

@ operator splitting (or partitioned scheme)
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Finite element methods for poroelasticity (review)

Iterative coupling algorithms

@ Coupling elasticity equation and Poisson equation solves
iteratively

@ Intrinsically block preconditioned iterative methods of
monolithic methods

@ The number of sufficient iteration is unknown and is sensitive
to parameters

@ Convergence rate is difficult to derive

Operator splitting algorithms

e Elaborate combination of time schemes (backward Euler,
Crank-Nicolson) or additional stabilization

@ Only one solve of each subproblem at each time step
@ Only first order convergence in time is known

@ Time step size is limited by parameter values
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Finite element methods for poroelasticity (review)

Previous works

@ iterative coupling
Kim (2010), Wheeler et al., Kumar et al.
@ operator splitting
Bukac et al. (2015) (conditionally stable)
Riviere et al. (2017) (discrete acceleration term for stability)
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Finite element methods for poroelasticity (review)

Previous works

@ iterative coupling
Kim (2010), Wheeler et al., Kumar et al.

@ operator splitting
Bukac et al. (2015) (conditionally stable)
Riviere et al. (2017) (discrete acceleration term for stability)

Question
Can we develop unconditionally stable operator splitting methods
for poroelasticity models?
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Finite element methods for poroelasticity (review)

Previous works
@ iterative coupling
Kim (2010), Wheeler et al., Kumar et al.

@ operator splitting
Bukac et al. (2015) (conditionally stable)
Riviere et al. (2017) (discrete acceleration term for stability)

Question
Can we develop unconditionally stable operator splitting methods
for poroelasticity models?

Wait, how about MPET?
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Multiple-network (quasi-static) poroelasticity model

(MPET)

u: solid displacement pi: pore pressure of i-th pore network
N
—div(2pe(u) + Adivul + > a;Vpl) = f,
i=1

sipi+aidivi—divK;Vp; +&(p) = g5,  1<i<N,
where p = (p1,...,pn) and fluid exchanges are given by

Zgﬂ—z pz §j<—i >0, §j<—z‘ = §i<—j

These MPET models are used to model multiple pore-network of
human brain (Tully, Vardakis, Ventikos, etc.)
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Multiple-network (quasi-static) poroelasticity model

(MPET)

Challenges
@ In the model, A can be large because soft biological tissues are
almost incompressible
@ The system is a saddle point problem but the Babuska-Brezzi
condition is difficult to check due to many pressure variables

To circumvent these difficulties, we introduce total pressure p;

N
P = Adivu — Zaipi.
i=1

Jeonghun J. Lee (Department of Mathematic Finite element method for the Biot model August 9, 2018 8 /20



Multiple-network (quasi-static) poroelasticity (MPET)

model

The system

divu—A"'p,— A la-p=0,
—div (2ue(u) +pd) = f,
sipi+ oA (pr+a-p) -V (K;Vp)+&(p) =g i=1,....N

has an energy-type estimates and its stability can be proved.
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Multiple-network (quasi-static) poroelasticity (MPET)

model

The system

divu—A"'p,— A la-p=0,
—div (2ue(u) +pd) = f,
sipi+ oA (pr+a-p) -V (K;Vp)+&(p) =g i=1,....N

has an energy-type estimates and its stability can be proved.

@ If stable mixed finite elements for the Stokes equation for
(u,p;) and Lagrange finite elements are used for p;,
i=1,..., N, then the discretization gives an optimal
approximate solution

@ The solution is robust for large A and small s;'s.
[L.-Mardal-Rognes-Piersanti]

Jeonghun J. Lee (Department of Mathematic Finite element method for the Biot model August 9, 2018



Motivation for operator splitting algorithms

In human brain model, N =4 and the system

divu—A"1p,—\ta-p=0,
—div(2ue(u)+p L) = f,
sipi + N NP+ a-p) = V- (K Vp)+&(p)=gi i=1,...,N.

is computationally expensive.
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Motivation for operator splitting algorithms

In human brain model, N =4 and the system

divu—A"'p;—Ala-p=0,
—div (2ue(u) +pid) = f,
sipi+ N P+ a-p) =V (K;Vp)+&(p)=g; i=1,...,N.

is computationally expensive.

In large scale simulations, memory limit can be more severe than
computation time, so reducing sizes of the linear algebraic system
is advantageous for large scale computations
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Motivation for operator splitting algorithms

In human brain model, N =4 and the system
divu—)flpt—)\*la‘p: 0,
—div(2ue(u)+p L) = f,
sipi+aiN T (Pr+a-p)— V- (K Vp)+&(p) =g i=1,...,N.

is computationally expensive.

In large scale simulations, memory limit can be more severe than
computation time, so reducing sizes of the linear algebraic system
is advantageous for large scale computations

Question
Can we develop unconditionally stable operator splitting methods
for multiple-network poroelasticity models?
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Operator splitting algorithm 1 (elasticity then diffusion)

Step 1: initial Data
Prepare initial data (u),p?,.p)) and the first time step solution

(u,ll,p%’h,p,ll) (e.g., by monolithic approach)

Step 2: solve elasticity (Lame) equation (find (uj*',p}'}!))

—le(2ME( n+1)) Vp n+1I fn+1

n+1 )\—1 n+1 __

n
divuy, Pin =\la-p}

Step 3: solve heat equation system (find p'*')

n+l __  n n+1
pzh pi,h ] _1 ph _ph n+1
Al + a; A\ Al —div (K Vp, )
n+1 n
+1 +1 QY Den — Pt
teilpy )=9"" - A
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Operator splitting algorithm 2 (diffusion then elasticity)

Step 1: initial Data
Prepare initial data (u),p?,.p)) and the first time step solution

(u,ll,p%’h,p,ll) (e.g., by monolithic approach)

Step 2: solve heat equation system (find p}*')

n+1 T n+1l

o —p n n+1
st Tk 3l % — div (Kivpﬁzp>

-1
L, (PEAPRY _ gt g aiPin P
2 2 A At

Step 3: solve elasticity (Lame) equation (find (u "+1,p?;{1))

—d1v(2,ue( n+1)) vpn-ﬁ-lI — fn+1

rL+l )\—1 n+1 __ =\~ a pn+1

divu, Pin
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Comparison of two operator splitting algorithms 2

elasticity then diffusion

o First order convergence in time

@ Local mass conservation holds
(with discontinuous Galerkin or enriched Galerkin methods)

diffusion then elasticity

@ Second order convergence in time

@ Local mass conservation does NOT hold due to time step
discrepancy
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Error analysis of algorithm 1 (elasticity then diffusion)

Variational form (exact solution)

<2,ue(u”+1),e( )> —|—<p?+1 divv> =0, YoeV,
<divu”+1,q1t> </\ "ot g > = </\_1a ~p”+1,qt>, Vg € Qup
<Sﬂ??+1,qz‘> + <az‘)\7104 PG (P”H) 7qz‘> +an,; (P?+17Qi)

<a1)\ p n+17(h> Vg € Qin, 1 <i<N.

ap,i(v,w) : discrete bilinear form for (K;Vv, Vw)

an;i(v,w)
= (.90, Y0) — ({0} ol gyep + (T A KT wh)e; o)
+ <’yhgl[[v]], [[w]]>5iug}? (symmetric interior penalty DG)

Jeonghun J. Lee (Department of Mathematic Finite element method for the Biot model August 9, 2018 14 /20



Error analysis of algorithm 1 (elasticity then diffusion)

Variational form (discrete solution)
<2,ue(uz+1),e(v)> + <p??:1,divv> =0, YveV,

<divuz+1,qt> — <)\71p2?:1,q15> = <)\*1a -pﬁ,(ﬁ>, Var € Qup

it =l
Si T 7qi
+1 n
_ Py D
+an,; (Pﬁlaqz')

_ ~1 Pﬁl—f’?ﬁh ,
=—( A v Vg € Qin,1 <t < N.
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Error analysis of algorithm 1 (elasticity then diffusion)

Variational form (error)

er:=0"—op

<2M6( ntly, e('v)>+< Z;H le’U> =0, YveV,

<d1ve"+1,q7t> — <)\ ! ”+1,q > = <>\_1a' (p"+1 —pﬁ) 7(]t>> Vi € Qe
n+1_ r
(o)
+ <Oéi/\_104' (i)nﬂ W) +&i (€Z+1) 7(]i> +an,i (egfl,%>

pTL+1 _pnh
1. t.h t, .
o () ) cauzien
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Error analysis of algorithm 1 (elasticity then diffusion)

Elliptic projection as interpolation

(IT, w1, I1,pP ) is the solution of

(2ue(Ma™™), e(v)) + (Mapf* divo)

= (2pe(u™),e(v)) + (pp ! dive), VoeV,
(divIlpu*! g ) — (A~ pp g )

- <divu”+l,qt> - </\*1p?+1,qt>, Va: € Qen
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Error analysis of algorithm 1 (elasticity then diffusion)

Elliptic projection as interpolation

n+1

IIyp is the solution of the system

<f¢ (th”+1> aQi> +an,i (th?+1a%')
= <§z‘ (PnH) an'> +an,; (p?+1,Qi) Vg € Qin, 1 <i<N.
Splitting of errors:

er=0"—op = (" =Mpo")+ (po" —o}) =: e{,’” + eg’"

o
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Error analysis of algorithm 1 (elasticity then diffusion)

Variational form (error)

<2ue( h"+1),e(v)>+< ;tnﬂ d1vv> =0, YveV,

<d1veh mtl qt> — <)\_legt’n+1,qt> = <)\_1a- (p"+1 *PZ) th>, Vg € Q)

1
‘n+1 p?; _pzh
Si | P; T i
B ) pn+1 —p
+ <ai>\ 1. <pn+1 _ hTth w3 (ez,nH) g

+ani ( hzn—l—l’ Qi>

TR S
1. t.h t, .
() eaunzien
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Error analysis of algorithm 1 (elasticity then diffusion)

Variational form (error)

<2M6( b, ”H),e(v)> + <e£;”+1,divv> =0,
<dlveh n+1’qt> _ <>\—1eh,n+17 > <

< 'T.L+1—thi — ypy + hn_H
P\ Pi Al
_ ) I,p" Tt — 11, ep™ Tt —ep”
+<ai/\ 1a_<pn+l_ p N p" 4 ep’ N P +§i(€z’n+l)

+ap,; ( hontl, %’)

1 hn+1 _ _h,
= — (oAt [ prt = Mot =Tt + A i
! t At At =

—ph) )
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Error analysis of algorithm 1 (elasticity then diffusion)

Variational form (error)

<2M6( b, ”H),e(v)> + <e£;”+1,divv> =0,
<d1veh mtl qt>—<>\_1egt’"+1,qt> = <)\_1a ( LT, p" +e ),Qt>,

eh7n+1 hn
<32’ (p’ At i >,<Iz‘>

6h,n—i—l _eh,n
+ <OéiA1a . (pAtp> +£’L (ez’n+l> 7q2>

+ap,; ( hontl, %’)

6h,n—l—l hn
= <ai)\1 (Pf N i ) q> —(sillitan o I+ ad T g g;)
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Error analysis of algorithm 1 (elasticity then diffusion)

Interpolation errors

n _ n+l thl th?
1= DP; At

n _ sn+1 thn+l_nhpn
2 =P t

+1 n

n _ o+l Oppy ™ —Tlpj
I3 =pi — At

Analysis challenges
The index (time step) discrepancy is an obstacle to obtain an
energy-type estimate in a standard way.
To overcome this difficulty, we consider estimates of difference
terms

D" = eh,n—l—l . eh,n

o o oz
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Error analysis of algorithm 1 (elasticity then diffusion)

Variational form (error)
(2pe(D*), e(v) ) +(Dp ! dive ) =0,
(divDy*t g ) — (A7 DpH 0 )
= (Mo (154 Dp) ).
(siDp,qi) + (A D+ At (eh™ 1) qi)
+Ata;”( hﬁ“,qi)
— < A 1Dpt,q1> - At<s,;[ﬁi tar e ID +Ozi)\_1I§L,qi>

where
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Error analysis of algorithm 1 (elasticity then diffusion)

From the inf-sup stability of (V'3,Q¢ ), there exists w™ € V', such
that

(divw™, Dp ) = 1513, 1w llv < 11Dl
where
loll} = Cue(v).e)),  lall?, = {2 " aa)

By taking v = Dy, +d0w" and ¢: = —Dj;, with 6 > 0 independent of
h, we can get

IDLI3 +C DR 1%, + 1D < (A ta 1, D ) + (A~ "a- D, D)

with C' > 0 independent of h
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Error analysis of algorithm 1 (elasticity then diffusion)

Taking ¢; :D;‘i for1<i<N,

(divw™, Dp ) = 1513, 1w llv < 11Dl
where
loll} = Cue(v).e®)),  lall?, = (@) " aa)

By taking v = Dy, +d0w" and ¢: = — D), with 6 > 0 independent of
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Error analysis of algorithm 1 (elasticity then diffusion)

Defining

N
Z )> Qi +ahz(pz7@h))

=1

the sum of the previous inequalities yield
IID”IIV+C||D NG, + 105, 131 + llee- Dy 13-
+Z (1D 12 ] + At A(emt1, bt
i=1
< <)\_1a Iy, Dgt> + <)\_1oz . DZ,D;‘J + AtA(eZ’”H,eZ’”)
+ At (Z (silf, D) )+ (A1 + 1), e 1);;>)

(2

~(x"'Dp e D))
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Error analysis of algorithm 1 (elasticity then diffusion)

After Young's inequality,
n|(2 c n |2 n|(2
IDullv + 5 1Dp, [5-1 + Cillee- Dylix-1)

1 1
* 5 Z {HDZZ sz} + iAtA(ez’n+1’ eZerl)
=1
3
< 5 (1B + o anri i) + T3
— 4e 0 lIx-1 2 ! ; 12,
]:

1
+ iAt.A(ez’", ezm)
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Error analysis of algorithm 1 (elasticity then diffusion)

The summation over n gives (with Cy depending only on C)
n 1 N
> lHDﬁLH%H-Co(HDﬁ;tHil e Dli-) + 5> [HDQH;H
I=1 i=1
1
+ fAtA(GZ’"+1,eZ’"+1)
1 & 1112 & 20 71112
IZ 15131 + D _(At)?| 1]
=1 j=1
+5 AtA( e, en’)
As a consequence, we have O(At(At+ h¥)) estimate of

n

l l l
Z[HDuHQerH R+l Dpl3-+5 ZHDZH ]
=1

z 1
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Jeonghun J. Lee (Department of Mathematic Finite element method for the Biot model

Error analysis of algorithm 1 (elasticity then diffusion)

To estimate eh™, take ¢; = epntl

in

<siDgZ,qZ> <ozl)\ a- Dh"—l—Atfz( h"+1),qi>
+ Atay, ; ( hi”H,ql)

= —< AT 1Dpt,qz> —At<sifﬁi+ai)\_1a-I§+Ozi>\_1I§L,Qi>
which gives

Z llep™ M 12, + lo-ep™ 131 + AtA(ep ™ ep™ )

N
. hn _hn+tl 1 h n hn+1\
E <szepi +Epr >+<)\ ey ey > <)\

11yn hn+1
Dpt,a ep >

’ pz
i=1

N
_Atz<5ilﬁi+0éi)\_1a,lg+al)\ 1]71, hn+1>
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Error analysis of algorithm 1 (elasticity then diffusion)

By (discrete) Poincare inequality,

- ™31 < CRA(h™H ety

1
Zu R P
1 h,n h,n 2
=§Z||€p; I3, *lla ey 13- i || e l5-1
=1

N
+Z H117I27I3H2
i=1

Since we estimated Y., || DY |13, by O(At(At+hF)), we can
estimate Y_,°, [|efm 1|2 + Ha‘eg’"HHi,l by O(At + h*)
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Summary of error estimates

Streamline of error estimate

e Estimate > ;' {HDét,a'Dé;H?\fl}

o Estimate [|a- ep™ -1
o Estimate ||e/" ||y and [el-]|, from the Lamé problem

e Estimate aj, ;( hv”,eﬁ;”)

€p; from the coupled heat equations
Error analysis of the second operator splitting method

Similar idea works and O((At)? + h*) estimate can be obtained
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Numerical results (only the second algorithm, Biot)

Discretization with Taylor-Hood element (P, — P;) for the
elasticity problem and P; element for the Poisson equation

At = h(=1/N)
N  Jlu—wupllz1  Rate  [lpt—pynlly2  Rate  [[p—ppllyn Rate  [[p—ppll 2 Rate
1 4.95¢ — 02 - 7.4de — 01 - 1.38¢ — 01 - 8.62¢ — 03 -
8 1.18¢ — 02 2.06 1.77e — 01 2.07 6.95¢ — 02 1.00 2.20e — 03 1.97
16 2.92¢ — 03 2.02 4.37¢ — 02 2.02 3.48¢ — 02 1.00 5.55¢ — 04 1.99
32 7.27e — 04 2.00 1.09e — 02 2.00 1.74e — 02 1.00 1.39¢ — 04 2.00
64 1.82¢ — 04 2.00 2.72¢ — 03 2.00 8.69¢ — 03 1.00 3.48¢ — 05 2.00

Table: N x N mesh of unit square dividing each square by a diagonal.

When N = 64, dimV}, = 33282, dim @)y, = 4225, dim @)}, = 4225
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Numerical results (only the second algorithm, Biot)

Discretization with stabilized P;—F, element for the elasticity
problem and P; element for the Poisson equation

At = h(=1/N)
N  Jlu—wupllz1  Rate  [lpt—pynlly2  Rate  [[p—ppllyn Rate  [[p—ppll 2 Rate
1 4.56e — 01 - 6.77¢ + 00 - 1.39¢ — 01 - 8.8le — 03 -
8 2.30e — 01 0.99 3.42¢ + 00 0.98 6.95¢ — 02 1.00 2.29¢ — 03 1.95
16 1.15¢ — 01 1.00 1.72e + 00 0.99 3.48¢ — 02 1.00 5.79¢ — 04 1.98
32 5.74e — 02 1.00 8.62e — 01 1.00 1.74e — 02 1.00 1.45¢ — 04 1.99
64 2.87¢ — 02 1.00 4.31e — 01 1.00 8.69¢ — 03 1.00 3.63¢ — 05 2.00

Table: N x N mesh of unit square dividing each square by a diagonal.

When N = 64, dim V}, = 8450, dim @, = 8192, dim @y, = 4225
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Numerical results (only the second algorithm, Biot)

Discretization with stabilized Pi—P; element for the elasticity

problem and P; element for the Poisson equation

At = h(=1/N)
N  Jlu—wupllz1  Rate  [lpt—pynlly2  Rate  [[p—ppllyn Rate  [[p—ppll 2 Rate
1 4.56e — 01 - 1.22e + 00 - 1.39¢ — 01 - 8.7de — 03 -
8 2.29¢ — 01 0.99 2.96e — 01 2.04 6.95¢ — 02 1.00 2.25¢ — 03 1.96
16 1.15¢ — 01 1.00 7.42¢ — 02 2.00 3.48¢ — 02 1.00 5.69¢ — 04 1.99
32 5.74e — 02 1.00 1.91e — 02 1.96 1.74e — 02 1.00 1.43e¢ — 04 2.00
64 2.87¢ — 02 1.00 5.06e — 03 1.01 8.69¢ — 03 1.00 3.57¢ — 05 2.00

Table: N x N mesh of unit square dividing each square by a diagonal.

When N = 64, dim V}, = 8450, dim @y, = 4225, dim @y, = 4225
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Conclusion

@ We proposed two unconditionally stable operator splitting
algorithms for MPET (also Biot) model

@ The first method is locally conservative with first order in time
convergence

© The second method is NOT locally conservative with second
order in time convergence

@ The methods can be optimized with well-known solvers for
the heat equation and the Lame equation

To do

@ Locally conservative operator splitting method with higher
order convergence in time

@ Preconditioning
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Thank you!
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