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Networks 



Self-Organizing Networks 

Emerge from Individual behavioral choices 
´  Not merely “emergent” 

´  Choices reflect decisions based on the network 

Emergent 
(image from EpiSim) Emergent and Self-Organizing 

Colocation by Daily Routine Make Friends with Popular People 



Self-Organizing Animal Social Networks 

Emerge from individual behavioral 
choices that depend on the behaviors 
of others 
´ Proximity 

´ Grooming 

´ Aggression 

´ Mating 

´ Communicating (harder to tell) 



Individual Benefits from Being in a Group 

Group Success 

Benefit to the individual, but achieved collaboratively 

´ Diffusion of risk from predators 

´  Increased foraging success 

´ Better engineering 

From www.amentsoc.org 

From telegraph.co.uk 



Individual Benefits from Being in a Network 

Very cool studies have looked at evolutionary fitness 
associated with social network position  

´ Can genes determine position in a network? 

´ Do particular positions lead to better survival/more 
reproduction? 

These focus on direct, 
individual fitness 
outcomes 

From sci-news.com 



Individual Costs to Being in a Group/Network 

Group Participation is not without costs 

´ Attract predators 

´ Competition for food/mates 

´ Disease transmission 



Group Benefits, Individual Success 

This sets up a system of feedback control  

 

´  Individual-scale self-organization 

´  Direct and Indirect fitness components 

´  Selection includes group benefits and 
costs 

´  Individuals pass on their genes or not 



Bio Language: Multilevel Selection 
Math Language: Multiscale Feedback Control 

Reproduced from Hock, Ng and Fefferman, 2010 



To explore, we build a mathematical abstraction 
and use it as a computational experimental system 

Assumption: Individuals make genetically determined 
“selfish” social affiliation choices (with no regard for 
group-level effects) 

Initial hypothetical proxies of 3 measurements of social 
status from social network theory: 

•  Degree – non-transitive dominance hierarchy  

•  Closeness – genetic relatedness 

•  Betweenness – much more complicated, assumed 
   much harder to detect 



Centrality has useful built-in features: 
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Experimental setup: 

•  Randomly generate arcs such that each vertex has 
 out-degree = 5 

•  Compute the 3 centrality measures for all of the 
 vertices and for the entire network 

•  In each step, each vertex drops two (how on next slide) of 
 its existing out-neighbors and replaces them 
 with two new ones 

•  Initialize a digraph with n vertices 

Then we iterate the following steps 



3 Different types of Populations –  
How to choose which social contacts to drop 

•  Each vertex drops two of its existing out-neighbors and replaces them 
with two new ones 

All individuals in a population use the same measure (Degree, Closeness or 

Betweenness) to evaluate others 

Each individual drops the two out arcs to the two affiliates with the worst 
centrality measure (among the five neighbors) and picks up two 
new ones (ratios are arbitrary, results are robust) 

In all types of populations, we record all of the centrality 
measures for each individual and for the entire network 
over time 



Unimportant Note: Not Just a Model System 
A bunch of  real-world human networks are actually 

Centrality self-organizing: 

HTML links 
on the Web 

From Lumeta.org 

Degree 

Top StumbleUpon 
Users 

Closeness 

15th Century 
Marriages between 
Florentine Families 

Betweenness 



How to choose which social contacts to pick up 

Three different ways: 
Incomplete knowledge – individuals know centrality of only 

their current contacts, so two new contacts are 
chosen at random from all the rest 

Complete knowledge – individuals know the centrality 
measure of everyone and choose the two best 

Zero Knowledge – individuals have no centrality measure 
preference – so they drop two connections at 
random (and then add back two new ones at random) 

Note: We don’t need to be able to calculate centrality to have good proximate ways to estimate it 



Zero-knowledge : before to the evolution of 
individual social choice or individuals are 
terrible at evaluating each other’s status (no 
good proximate mechanism) 

Complete-knowledge : social choice in smaller 
populations where you can evaluate 
everyone 

Incomplete-knowledge : social choice in larger 
populations where you can only evaluate 
your friends 

The evolutionary interpretation of the 
levels of knowledge 



Convergence! 



Result: Different Individual Strategies Work to 
Accomplish Different Group Outcomes 

Already gives us some insight into evolutionary 
pressures on self-organizing social behaviors 

Discussed in Fefferman and Ng, 2007a 
and Hock and Fefferman 2011, and 2012 

D � B > C > R R > C > B > D R > C > B > D 

Good abstract experimental system: separation in success 
across metrics and among populations with these traits 



What happens over time? 

Measured Metric is Degree 

Reproduced from Fefferman and Ng, 2007 
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Measured Metric is Closeness 

And the stability and success under Closeness? 

Reproduced from Fefferman and Ng, 2007 Iterations x10 
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And the stability and success under 
Betweenness? 

Measured Metric is Betweenness 

Reproduced from Fefferman and Ng, 2007 
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Selection and Population Size 

Already gives us some insight into evolutionary pressures on 
self-organizing social behaviors in populations of 
different sizes! 

Reproduced from Fefferman and Ng, 2007 

Degree-Driven Fitness Closeness-Driven Fitness 

R 

B Inc 

C Inc 

D Inc 

B Com 

C Com 

D Com 

Could look just like density 
dependent feedback cycling 

Hits a phase transition in 
growth rate 



Can this happen? 

We would need at least one of the following:  

(1)  Neutral outcomes – no net impact 

(2)  Individuals do well by choosing things that accidentally are best for the 
group 

(3)  Individuals may or may not benefit, but any costs are recouped by the 
distributed effects of group benefits 

Do any of these 3 things happen?  

In math language: Do global feedback rules to local decisions 
 prohibit this type of emergence? 

In bio language: Can this type of system evolve by natural 
 selection?  



How do individuals do if they follow the Degree 
self-organizing rule or not? 

Size is Scaled by Degree 

0% Rule Breakers 2% Rule Breakers 20% Rule Breakers 

Answers Come from Studying Rule-Breakers 

Reproduced from Hock and Fefferman, 2011 



Individuals do just as well if they do or do not participate in 
the self-organizing rule of Degree 

HOWEVER, rule-breakers change overall group organization 
even though individual values don’t change (means 
evolutionary incentive to participate) 

Rule Breakers Rule Followers Whole Group 

Answer for Degree: Neutral 

Reproduced from Hock and Fefferman, 2011 



What About Following the Betweenness Self-
Organizing Rule? 

0% Rule Breakers 2% Rule Breakers 20% Rule Breakers 

Size is Scaled by Betweenness 

Reproduced from Hock and Fefferman, 2011. 



Small numbers of rule breakers do better, large numbers of rule 
breakers mean only some do better 

Consistent with the previous group-level analyses, with more 
rule-breakers, the whole population did better – evolution of 
this system may be unstable 

Rule Breakers Rule Followers Whole Group 

Answer for Betweenness: Net Benefit 

Reproduced from Hock and Fefferman, 2011. 



What have we built? Not a model of a real system  

Experimental system with nice properties 

´ Self-organizing behaviors 

´  Individual benefits 

´ Group benefits 

Global outcomes provide mechanism of control on evolution of 
social traits 

´  Insights into organizational success and population size 

´  Evolution of cooperation 

´ Quantitative predictions about stability of self-organizing systems 

 



Group Success May Not Be Our Network-Level 
Outcome – Lessens in Epidemiology! 

Simulated Disease Process (SEIIS) on All Population Types: 

Reproduced from Fefferman & Ng 2007 



A Few Quick Cool Things I Won’t Explain Today: 

Super-spreaders aren’t always high degree individuals in networks with ongoing self-
organization! 

Computational experiments on coupled stochastic processes are tricky – use a 
complete graph as a way to cheat the number of model realizations needed for 
network evolution AND epidemic spread 

Different self-organizing strategies increase population robustness against disease at 
different probabilities of per-contact transmission 

Increased network centrality doesn’t always correlate with increased disease burden 

 
One Thing I Will Talk About Quickly: 

Ongoing self-organized rewiring dynamics were protective against 
disease 

Can be found in Fefferman and Ng, 2007; Hock and Fefferman, 2011. 

Details in Fefferman and Ng, 2007 



Disease on Self-Organizing Networks 

Reproduced from Fefferman and Ng, 2007b 

Finally! We discovered computationally something we 
can prove analytically! 



I’m actually not going to go through the proof 

The Intuition for how 
´ Instead of estimating numbers 

of infections, focus on 
threshold in transmissibility 
that implies transmission will 
occur on the current network 
state 

´ Calculate limit of recurrence 
relation of shifting states 

´ Compare boundaries of that 
threshold for static and 
dynamic network recurrences 



These systems are analytically challenging  
            (even in the simple, deterministic cases) 

´ Bi-directionally coupled 

´ Coupling occurs at multiple scales 

´ Scale of coupling can (and usually is) asymmetric 

´ Frequently discrete in individual action, though 
continuous in global dynamics 



When should we even bother looking for analytic 
approximations? 

´  Can we reduce the dynamics or shift the outcome 
 variable to something with a well-defined
 recurrence relation? 

´  Is temporal order critical to individual dynamics? 

´  Can we approximate the global behavior without 
 finding a good approximation for individual 
 dynamics under any circumstances? 



More Importantly: 

There are reasons we can discuss analytic solutions for 
anything about this: 

´  We constructed the simulation to be a 
 mathematically controllable abstraction 

´  It has minimal complexity for the features we need 

´  The observed behaviors come from single 
 differences in action/assumption 



Potential Recommendation for Studying Self-Organization 
(definitely not for everyone or every problem) 

 We all have a tendency to model actual biological 
systems 

 Instead, sometimes we might want to try modeling the 
simplest systems with isolated, abstract behaviors 
in mathematically controllable ways and then 
gradually put back the realism as we need it to gain 
further insight 
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